Kindergarten Framework
A Guide to Empower Our Young Learners

2014–2015 • Version 2

Federal Way Public Schools
“The only thing that interferes with my learning is my education.”

“La única cosa que interfiere con mi aprendizaje es mi educación.”

– Cita de Albert Einstein
Thank you for using the Federal Way Public Schools Kindergarten Framework, A Guide to Empower Young Learners (version1). Kindergarten is one of the most pivotal years of a child’s life. On behalf of the Federal Way Public Schools (FWPS) and the FWPS Early Learning Department in Teaching for Learning, we want to express our sincere appreciation for your participation as a member of FWPS Early Learning team.

Current research of early brain development, demonstrates the importance of the earliest experiences which have a lasting impact on later learning, health and success of our learners. This framework describes and provides a collection of resources meant to serve as a guide for all, to create a common language to support the implementation of a high quality kindergarten classroom. The FWPS Kindergarten Framework was designed through an interactive and collaborative process between the FWPS Early Learning Team, FWPS Early Learning Advisory, and kindergarten teachers representing each one of our elementary schools.

The purpose of this framework and supporting resources is to guide kindergarten teachers, administrators, parents, caregivers, practitioners, community and friends as they build and sustain an innovative kindergarten classroom. The foundational core to the framework’s structure are five researched-based components: Standards, Assessment, Instruction, Leadership, and System-wide Commitment (SAILS). These essential components anchor the future comprehensive PreK-3rd grade plans. SAILS provides a systemic model for improving instruction.

This groundbreaking work will help build capacity with two goals in mind:

Goal 1: Provide access to experts and research-based resources to enhance Federal Way Public School’s understanding of math, literacy, science and second language acquisition, particularly in the general education classroom as we attend to the whole child.

Goal 2: Support Federal Way Public School’s efforts to build school-level knowledge, experience, and understanding of the relationship between second language acquisition and literacy.

FWPS looks forward to continuing this significant work together with our community of learners. The importance of the Kindergarten Framework Leadership Committee cannot be overstated. Each member’s participation helped establish the direction of kindergarten in Federal Way Public Schools. Thank you for your commitment to excellence in kindergarten in FWPS with a spirit of collaboration.

Sincerely,

Luisa Sanchez-Nilsen Dawn McCaffrey and Holly Gjersee
FWPS, Teaching and Learning FWPS, Teaching for Learning
Director of Early Learning Early Learning Program Specialists
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>1–1</td>
</tr>
<tr>
<td>Introduction to the Kindergarten Framework</td>
<td>2–1</td>
</tr>
<tr>
<td>Early Learning Vision and Guiding Principles Goals</td>
<td>3–1</td>
</tr>
<tr>
<td>Teacher Implementation Action Plan</td>
<td>4–1</td>
</tr>
<tr>
<td>Administrator Implementation Action Plan</td>
<td>5–1</td>
</tr>
<tr>
<td>Classroom Environment and Culture</td>
<td>6–1</td>
</tr>
<tr>
<td>Understanding Child Development</td>
<td>7–1</td>
</tr>
<tr>
<td>Family and Relationships</td>
<td>8–1</td>
</tr>
<tr>
<td>Instruction and Standards</td>
<td>9–1</td>
</tr>
<tr>
<td>5 Dimensions of Teaching and Learning</td>
<td>9–5</td>
</tr>
<tr>
<td>ELA</td>
<td>9–7</td>
</tr>
<tr>
<td>Social Studies Unit Outlines</td>
<td>9–18</td>
</tr>
<tr>
<td>Math</td>
<td>9–20</td>
</tr>
<tr>
<td>Science</td>
<td>9–28</td>
</tr>
<tr>
<td>Convergences found in ELA, math and science</td>
<td>9–41</td>
</tr>
<tr>
<td>Assessment</td>
<td>10–1</td>
</tr>
<tr>
<td>Multi-level System of Support (MTSS)</td>
<td>10–2</td>
</tr>
<tr>
<td>FWPS Kindergarten Assessments</td>
<td>10–3</td>
</tr>
<tr>
<td>Content, Guiding Principles and continuum</td>
<td>11–1</td>
</tr>
<tr>
<td>ELA</td>
<td>11–1</td>
</tr>
<tr>
<td>Math</td>
<td>11–28</td>
</tr>
<tr>
<td>Resources</td>
<td>12–1</td>
</tr>
<tr>
<td>References</td>
<td>13–1</td>
</tr>
<tr>
<td>Common Core State Standards (CCSS Web Resources)</td>
<td>13–2</td>
</tr>
<tr>
<td>Common Core Video Resources for post-viewing</td>
<td>13–3</td>
</tr>
<tr>
<td>Common Core Web Resources</td>
<td>13–3</td>
</tr>
<tr>
<td>Web Resources</td>
<td>13–3</td>
</tr>
<tr>
<td>Child development:</td>
<td>13–4</td>
</tr>
<tr>
<td>Washington State Early Learning and Development Guidelines</td>
<td>13–4</td>
</tr>
<tr>
<td>Math:</td>
<td>13–4</td>
</tr>
<tr>
<td>For Parents and Caregivers</td>
<td>13–5</td>
</tr>
<tr>
<td>Brain Research:</td>
<td>13–5</td>
</tr>
<tr>
<td>System Resources</td>
<td>13–5</td>
</tr>
</tbody>
</table>
Welcome

“The mind is not a vessel to be filled, but a fire to be kindled”

– Plutarch

The Federal Way Public Schools’ Kindergarten Framework is designed to assist kindergarten teachers who are charged with the tremendous responsibility to reach out and embrace each child and guide them through the doorway to amazing learning. We want to create classroom environments that are student centered and empower our young learners. The FWPS Kindergarten Framework is a set of highly accessible and agreed-upon Kindergarten guidelines to help teachers, families and caregivers come together in ensuring all children grow and learn in optimal ways. This collection of resources is meant to serve as a guide for all to create a common language to support the implementation of a high quality kindergarten classroom and school year.

With the adoption of the Common Core State Standards, Kindergarten teachers have the huge undertaking of creating developmentally appropriate classrooms that meet the rigor and demands of the Common Core State Standards. We have identified research/evidence based practices to help define this comprehensive, integrated approach to teaching and learning as we prepare our children to be career and college ready. Research identifies and supports Kindergarten as a pivotal year. The FWPS Kindergarten Framework is available online at www.fwps.org.

<table>
<thead>
<tr>
<th>What it is...</th>
<th>What it is not.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kindergarten Foundation for Teachers, Families and Caregivers</td>
<td>• A Curriculum</td>
</tr>
<tr>
<td>• A Guide to Assist Professional Development</td>
<td>• A District Mandate</td>
</tr>
<tr>
<td>• Common Expectations for Kindergarten</td>
<td>• An Assessment</td>
</tr>
<tr>
<td>• Laser like focus within a PreK-3rd Grade Comprehensive Plan</td>
<td>• A Specific Philosophy</td>
</tr>
</tbody>
</table>
Focus on Kindergarten

The Kindergarten Framework was designed through an interactive and collaborative process between the Federal Way Public Schools’ Early Learning Team and Kindergarten teacher representatives from FWPS’ elementary schools. These teachers were selected by the building principals.

Kindergarten Leadership Committee:

- Tamiko Pepper
 Adelaide Elementary
- Sara Moenoa
 Brigadoon Elementary
- Kate Cole
 Camelot Elementary
- Jane Wohn
 Enterprise Elementary
- Heidi Smith
 Green Gables Elementary
- Jessica Nilsen
 Lake Grove Elementary
- Monica Schilling
 Lakeland Elementary
- Alexandra Hernandez
 Mark Twain Elementary
- Cindy Dennison
 Meredith Hill Elementary
- April Marino
 Mirror Lake Elementary
- Alyssa Johnson
 Nautilus K-8
- Katie Smith
 Olympic View Elementary
- Cheryl Stark
 Panther Lake Elementary
- Cassie Halladin
 Rainier View Elementary
- Jennifer Muellenbach
 Sherwood Forest Elem.
- Rayna Kubo
 Silver Lake Elementary
- Monica Humphrey
 Star Lake Elementary
- Jennifer Chaves
 IC- Sunnycrest Elementary
- Natalie Salstrom
 Twin Lakes Elementary
- Robyn Grandprey
 Twin Lakes Elementary
- Angela Heigh
 Valhalla Elementary
- Kari Angeline
 Wildwood Elementary
- Rachel Richardson
 Woodmont K-8
- Holly Gjersee
 Early Learning Program Specialist
- Dawn McCaffrey
 Early Learning Program Specialist
- Luisa Sanchez-Nilsen
 Early Learning Director
- Angie Neville
 ELA Coordinator P-12
- Annie Mosich
 Math TOSA P-5
- Megan Walker
 Science TOSA P-1
- Mike Martin
 Design and Illustration

Funding provided by the “Road Map Region Race to the TOP- Project 3B Round 1”
a green house.
And by the green house
there is...

a purple house.
And by the purple house
there is...
Kindergarten Framework

Introduction

Kindergarten is a pivotal year to a child’s development. For some students this is the beginning of their academic career. Our goal is to attend to the whole child, with attention to key developmental phases and learning environments to ensure that all children benefit from an aligned, holistic approach to learning. There is strong evidence that building a solid foundation for life begins at birth and the development of social-emotional and cognitive skills, including communication, during a child’s early years has an impact on his or her future success in school and life. Current research focuses on brain development, demonstrates the importance of environment, experiences, and relationships as young children move from early childcare settings to kindergarten.

The first eight years of life are critical in establishing strong foundational skills for lifelong learning. When gaps occur, even the best families and teachers will struggle to find ways to help these children catch up. To prevent such preparation gaps, all family support systems, early learning systems, and the early elementary systems (which are key for literacy/numeracy development), must all be high quality and aligned with each other into a mutually supportive learning and developmental continuum.

Speaking to this, a growing reform movement is taking place in many parts of the nation, known as the Pre-Kindergarten through Third-Grade Alignment, or P-3.

To help support PreK-3 alignment, Federal Way Public Schools in collaboration with a Kindergarten Leadership Committee has developed this Kindergarten Framework to help teachers, parents, and caregivers understand, observe, track and nurture critical skills in all children from birth through kindergarten. Based on research and best practices, the guidelines also help parents and caregivers understand when children may need extra help for social, language, cognitive, or motor delays. Learning is interrelated and no one area is more important than another; learning in one area helps build on learning in other areas.

The Kindergarten Framework provides a “common language” and way to understand children’s development in the following interrelated areas, at each stage of learning development starting the first day of Kindergarten:

- Their understanding about themselves, their family, and their culture
- Their self-management, including how to cope with strong emotions and unexpected changes
- Their abilities to create and maintain relationships with other children and adults
- Their abilities to touch, see, hear, and move around, both gross and fine motor skills
- Their overall mental and physical health, including nutrition, safety, and personal care
- Their abilities to communicate in all literacy domains including speaking, listening, reading and writing
- Their ability to learn new content about the world, including games, math, science, and social studies

Having a set of generally highly accessible and agreed-upon Kindergarten Framework guidelines helps teachers, families, and caregivers come together in ensuring all children grow and learn in optimal ways.
Early Learning Vision and Guiding Principles and Goals*

Vision Statement

The Federal Way Public Schools Early Learning Department will provide a responsive comprehensive system of structures, resources and expertise to ensure that all FWPS children have the foundational skills and critical support needed to be successful in school and life.

Guiding Principles – aligned to Washington State’s Department of Early Learning Plan

• Families are children’s first and most important teachers
• Family, school and community will collaborate to support each child’s growth and development
• Kindergarten will recognize and support differences in the needs, skills and abilities of children as they develop as individuals
• Children thrive in environments that are safe, positive, play based and age appropriate
• All children are capable and competent learners
• Kindergarten provides high quality learning opportunities that are balanced between child-initiated and teacher-guided
• Kindergarten is a transition year and a bridge between early learning experiences and the K-12 system

Goals

• Create a dynamic, usable, and accessible continuum of developmentally appropriate services that support a variety of experiences that reflect a whole-child approach.
• Provide all FWPS children with authentic experiences: honoring, engaging, and communicating with families, caregivers, early learning professionals and communities as key partners.
• Providing all FWPS children with access to the core elements of our Federal Way Public Schools Early Learning Department Plan: Pre-K through 3rd Grade.

* Vision was created in a multi-step process including the FWPS Early Learning Advisory Team, family representatives, teachers, community members, and 23 elementary principals. Adaptations went through a series of cycles for input, edits, and revisions. Each committee participated as a work group to build the FWPS Early Learning Vision.
Teacher Implementation Action Plan:

NOTE: To begin use of the *Kindergarten Framework* we suggest the use of the following plan. This action plan is for those teachers that want to immediately implement the major parts of the *Kindergarten Framework*. While using the critical components of the plan listed here, the goal is to deepen knowledge.

<table>
<thead>
<tr>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Analyze core instructional materials for alignment with research, Kindergarten Standards or Expectations. For example, in literacy you could start with the five essential components (phonemic awareness, phonics/decoding/structural analysis, fluency, vocabulary, comprehension) or attending to the instructional shifts in math.</td>
</tr>
<tr>
<td>2) Utilize assessment plans for a screening of all students using an universal screener 3x a year. Identify students who score below a criterion-normed benchmark for progress monitoring every two weeks, or weekly, as needed, for struggling students. A diagnostic assessment may be required to determine explicit and direct instruction. Outcomes of the assessment plan will vary based on the data and the level of prevention or intervention.</td>
</tr>
<tr>
<td>3) Create a detailed plan for data collection and management that incorporates collecting school-wide assessment results each quarter, analyzing all such data for trends, anomalies, needs, and communicating the data-based needs to teachers, families or caregivers. This could be from multiple measures.</td>
</tr>
<tr>
<td>4) Create plans and schedules for collaborative assessment data analysis for the Kindergarten team to work together to determine next steps for students inclusive of embedding family or caregiver support.</td>
</tr>
<tr>
<td>5) Create daily schedules that allow sufficient protected, uninterrupted literacy/core instructional time of 90 minutes minimum for ELA and 60 minutes minimum for Math, with an additional 30 minutes or more for strategic instruction (prevention) or for intensive intervention.</td>
</tr>
</tbody>
</table>
| 6) **Generate** a professional development plan in alignment with your, “school improvement plan”. Using the following topics:
 STANDARDS: planning and teaching standards-aligned lessons.
 ASSESSMENT: administering screening, diagnostic, and progress monitoring assessments and interpreting the data to make instructional decisions.
 INSTRUCTION, PREVENTION, and INTERVENTION:
 • instructional modifications
 • how to teach the instructional materials effectively for all students
 • research-based strategies for teaching the literacy and math essential components
 • strategies for differentiated instruction with flexible grouping and scaffolding techniques
 • strategies for systematic and explicit instruction
 • sharing data, growth and outcomes with families or caregivers
 7) **Using** all assessment data and teacher recommendations to determine differentiated instruction for students inclusive of all supplemental supports. |
Administrator’s Implementation
Action Plan:

NOTE: To begin use of the *Kindergarten Framework* we suggest the use of the following plan. This action plan is for those administrators that want to immediately implement the major parts of the *Kindergarten Framework*. While using the critical components of the plan listed here, the goal is to deepen knowledge.

Actions

1) Analyze core instructional materials for alignment with research, Kindergarten Standards or Expectations. For example, in literacy you could start with the five essential components (phonemic awareness, phonics/decoding/structural analysis, fluency, vocabulary, comprehension) or attending to the instructional shifts in math.

2) Select and purchase supplemental materials for Tier II and Tier III learners, based on identified gaps in core instructional materials, based on evidence SBR (Scientific Based Research), and on student needs.

3) Formulate an assessment plan for a screening of all students using a universal screener 3x a year. Identify students who score below a criterion-normed benchmark for progress monitoring every two weeks, or weekly, as needed, for struggling students. A diagnostic assessment may be required to determine explicit and direct instruction. Outcomes of the assessment plan will vary based on the data and the level of prevention or intervention.

4) Formulate a detailed plan for data collection and management that incorporates collecting school-wide assessment results each quarter, analyzing all such data for trends, anomalies, needs, and communicating the data-based needs to the teachers at all levels. This could be from multiple measures.

5) Create plans and schedules for collaborative assessment data analysis for the Kindergarten team to work together to determine next steps for students.

6) Create daily schedules that allow sufficient protected, uninterrupted literacy/core instructional time of 90 minutes minimum for ELA and 60 minutes minimum for Math, with an additional 30 minutes or more for strategic instruction (prevention) or for intensive intervention.

7) Consider ways to utilize the entire teaching staff to assist with curriculum, core instruction, and to help address the diverse student needs in the Kindergarten core classroom as well as in Tier II and III intervention.

8) Generate a professional development plan using in-house study based on teacher readiness, school resources, and need. This could be done in alignment with your, “school improvement plan”. Consider the following topics:
 STANDARDS: planning and teaching standards-aligned lessons.
 ASSESSMENT: administering screening, diagnostic, and progress monitoring assessments and interpreting the data to make instructional decisions.
 INSTRUCTION, PREVENTION, and INTERVENTION:
 - instructional modifications
 - how to teach the instructional materials effectively for all students
 - research-based strategies for teaching the literacy and math essential components
 - strategies for differentiated instruction with flexible grouping and scaffolding techniques
 - strategies for systematic and explicit instruction
 - sharing data, growth and outcomes with families or caregivers

9) Support job-embedded professional development through the services of a knowledgeable and experienced teacher who can advise, coach, mentor and support their peer colleagues to effectively implement the Instructional Plan through a Multi-level System of Support (MTSS).

10) Using all assessment data and teacher recommendations to determine instruction for students. Place the neediest students with the most capable teachers.
In a well structured kindergarten classroom, learners understand what they should know and be able to do. In this section you will find examples of how to set up a kindergarten classroom, a field tested daily schedule, an instructional plan, and a source for positive behavior. The generated examples for this framework are only one of many possible ideas for a successful kindergarten classroom. A classroom that has fostered a truly supportive environment for a multi-tiered system of support for instruction, suggested in the samples below will have an area created for large group interaction, a venue for small group work, and arranged space in the room designated for independent sustained reading and writing. In addition, there is a well-organized leveled classroom library that attends to the interests, cultures, and needs of the students. It is essential to have classroom libraries to support individual student needs for independent reading. This library can be organized in a manner that best meets the classroom needs. Books could be clustered by topic, author, series, genre, and level—all for the purpose of facilitating appropriate book choices.

Research supports the posting of student generated charts, displaying student created work, and resources such as rubrics, anchor papers and word banks that are evident throughout the class. Electronic devices are available for teacher and student use as an integral part of instruction and learning.

The following two sample room arrangements support a balanced literacy model and are examples of how a teacher might design his/her class.

Sample 1: Possible Room Arrangement
Sample 2: Possible Room Arrangement

- Whole group meeting area
- Word wall
- Math and reading station materials
- Student table
- Student table
- Student table
- Tech cart
- Teacher desk
- Dramatic play
- Computer table
- Smartboard, screen, or white board
- Anchor Charts
- Classroom library
- Listening center
- Book boxes
- Small group table
NAEYC Top 10 Signs of a Good Kindergarten Classroom

Kindergarten is a time for children to expand their love of learning, their general knowledge, their ability to get along with others, and their interest in reaching out to the world. While kindergarten marks an important transition from preschool to the primary grades, it is important that children still get to be children—getting kindergarteners ready for elementary school does not mean substituting academics for play time, forcing children to master first grade “skills,” or relying on standardized tests to assess children’s success.

Developmentally appropriate kindergarten classrooms encourage the growth of children’s self-esteem, their cultural identities, their independence and their individual strengths. Kindergarten children will continue to develop control of their own behavior through the guidance and support of warm, caring adults. At this stage, children are already eager to learn and possess an innate curiosity. Teachers with a strong background in early childhood education and child development can best provide for children what they need to grow physically, emotionally, and intellectually. Here are 10 signs of a good kindergarten classroom:

1. Children are playing and working with materials or other children. They are not aimlessly wandering or forced to sit quietly for long periods of time.

2. Children have access to various activities throughout the day, such as block building, pretend play, picture books, paints and other art materials, and table toys such as legos, pegboards, and puzzles. Children are not all doing the same things at the same time.

3. Teachers work with individual children, small groups, and the whole group at different times during the day. They do not spend time only with the entire group.

4. The classroom is decorated with children’s original artwork, their own writing with invented spelling, and dictated stories.

5. Children learn numbers and the alphabet in the context of their everyday experiences. Exploring the natural world of plants and animals, cooking, taking attendance, and serving snack are all meaningful activities to children.

6. Children work on projects and have long periods of time (at least one hour) to play and explore. Filling out worksheets should not be their primary activity.

7. Children have an opportunity to play outside every day that weather permits. This play is never sacrificed for more instructional time.

8. Teachers read books to children throughout the day, not just at group story time.

9. Curriculum is adapted for those who are ahead as well as those who need additional help. Because children differ in experiences and background, they do not learn the same things at the same time in the same way.

10. Children and their parents look forward to school. Parents feel safe sending their child to kindergarten. Children are happy; they are not crying or regularly sick.

Individual kindergarten classrooms will vary, and curriculum will vary according to the interests and backgrounds of the children. But all developmentally appropriate kindergarten classrooms will have one thing in common: the focus will be on the development of the child as a whole.

Additional Resources:

Kindergarten Daily Schedule (Example)

8:45 – 9:05 a.m. **Opening and Morning Meeting** – learning community building

9:05 – 9:50 a.m. **Writer’s Workshop**
- Whole group Interactive Writing
- Whole group mini-lesson
- Small guided group/flexible strategy groups

9:50 – 10:30 a.m. **Reader’s Workshop** *(Shared reading – concepts about print, letter id, phonemic awareness, phonics, high frequency words)*

* Reading mini-lessons, guided reading groups and conferring

Student choices:
- read to self
- read to someone or listen to reading
- write something or word work

10:30 – 11:10 a.m. **Daily 3/Reader’s Workshop** *(Comprehension focus mini-lesson)*

* Read aloud, think aloud, shared-close reading, guided reading groups/flexible strategy groups and conferring

Student choices: (Same as above)

11:10 – 11:55 a.m. PE or Music

11:10 a.m. – 12:10 p.m. **Daily 3/Reader’s Workshop** *(Science/social studies focus mini-lesson)*

* Reading mini-lessons, guided reading groups and conferring

Student choices:
- read to self
- read to someone or listen to reading
- write something or word work

12:10 – 1:00 p.m. Lunch and Recess

1:00 – 2:10 p.m. **Math Workshops**

* Whole group math lesson* – direct/explicit, fluency focus, task based lesson, Launch, Explore, Share

* Differentiated/Small Group Math Instruction* – flexible strategy group, one-on-one conferring, math stations/rotations

2:10 – 2:30 p.m. Recess

2:30 – 3:00 p.m. **Math Fluency Practice** – Number Talks

3:10 – 3:15 p.m. Pack up / Clean up

3:15 p.m. Dismissal
Kindergarten Daily Schedule Plan 1

<table>
<thead>
<tr>
<th>Time Duration</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 minutes</td>
<td>Whole Group Morning Meeting – Community Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-60 minutes daily</td>
<td>Writer’s Workshop</td>
<td>Writer’s Workshop</td>
<td>Writer’s Workshop</td>
<td>Writer’s Workshop</td>
<td>Writer’s Workshop</td>
</tr>
<tr>
<td></td>
<td>• Interactive writing</td>
</tr>
<tr>
<td></td>
<td>• Launching writer’s workshop</td>
</tr>
<tr>
<td></td>
<td>• Small guided/strategy writing groups</td>
</tr>
<tr>
<td>30-90 minutes daily</td>
<td>Reader’s Workshop</td>
<td>Reader’s Workshop</td>
<td>Reader’s Workshop</td>
<td>Reader’s Workshop</td>
<td>Reader’s Workshop</td>
</tr>
<tr>
<td></td>
<td>• Whole group lesson – shared reading, read aloud – mentor text, mini-lesson</td>
<td>• Whole group lesson – shared reading, read aloud – mentor text, mini-lesson</td>
<td>• Whole group lesson – shared reading, read aloud – mentor text, mini-lesson</td>
<td>• Whole group lesson – shared reading, read aloud – mentor text, mini-lesson</td>
<td>• Whole group lesson – shared reading, read aloud – mentor text, mini-lesson</td>
</tr>
<tr>
<td></td>
<td>• small guided strategy groups</td>
</tr>
<tr>
<td></td>
<td>• center/stations</td>
<td>• center/stations</td>
<td>• center/stations</td>
<td>• center/stations</td>
<td>• center/stations</td>
</tr>
<tr>
<td>30-90 minutes daily</td>
<td>Math workshops</td>
<td>Math workshops</td>
<td>Math workshops</td>
<td>Math workshops</td>
<td>Math workshops</td>
</tr>
<tr>
<td></td>
<td>• Whole group lesson 15-30 minutes</td>
</tr>
<tr>
<td></td>
<td>• Small group flexible strategy groups/ guided groups</td>
</tr>
<tr>
<td></td>
<td>• Centers/Stations</td>
<td>• Centers/Stations</td>
<td>• Centers/Stations</td>
<td>• Centers/Stations</td>
<td>• Centers/Stations</td>
</tr>
</tbody>
</table>

Integrated into Readers workshop and Writer’s workshop

When units are implemented:

- Next Generation Science Standards – Rainforest Unit: Animals 2x2, Trees
- GLAD units – Citizenship, Readers & Writers, Rainforests
- Social studies - Communities
School-Wide Positive Behavior Interventions & Supports (PBIS)

Positive Behavioral Interventions and Supports (PBIS) is an “implementation framework that is designed to enhance academic and social behavior outcomes for all students by (a) emphasizing the use of data for informing decisions about the selection, implementation, and progress monitoring of evidence-based behavioral practices; and (b) organizing resources and systems to improve durable implementation fidelity.” (Sugai and Simonsen, 2012). The underlying theme is teaching behavioral expectations in the same manner as any core curriculum subject.

This document is intended to provide an overview of just a few of the steps a school takes when beginning to implement PBIS. For more information please visit the national website for PBIS: http://www.pbis.org or our local chapter the Northwest PBIS Network: http://www.pbisnetwork.org/

BEHAVIORAL EXPECTATIONS

A school implementing PBIS will focus on three to five behavioral expectations that are positively stated and easy to remember. In other words, rather than telling students what not to do, the school will focus on the preferred behaviors. Here are some examples from other schools:

- Respect Yourself, Respect Others, and Respect Property
- Be Safe, Be Responsible, Be Respectful
- Respect Relationships and Respect Responsibilities

After the PBIS team determines the 3-5 behavioral expectations that suit the needs of their school, they will take this information back to the staff to ensure at least 80% of the staff buy into the chosen expectations. Consistency from class to class and adult to adult is very important for successful implementation of PBIS.

The team will then create a matrix of what the behavioral expectations look like, sound like, and feel like in all the non-classroom areas. This matrix will have approximately three positively stated examples for each area.

<table>
<thead>
<tr>
<th>Bus</th>
<th>Cafeteria</th>
<th>Restroom</th>
<th>Playground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respect Property</td>
<td>Keep feet and hands where they belong. Throw unwanted items in wastebasket. Keep food and drinks in backpack.</td>
<td>Place tray on kitchen window shelf after scraping leftovers into wastebasket. Wipe table with sponge provided. Clean food spills off floor.</td>
<td>Flush toilet after use. Use two squirts of soap to wash hands. Throw paper towels in wastebasket. Report any graffiti or broken equipment to adult on duty. Return playground equipment to proper area. Use equipment as it was designed.</td>
</tr>
</tbody>
</table>

Figure 1: Example Behavior Expectation Matrix
TEACHING BEHAVIOR EXPECTATIONS
After the school staff (including both certificated and classified staff) has agreed on the behavioral expectations, the PBIS team will determine how the behavioral expectations and routines will be taught in and around the school. Many schools choose to use several days at the beginning of each year to take the students around the school to stations, where the skills are taught in setting specific locations. For example, a bus may be brought to the school and the children will practice lining up, entering the bus, sitting on the bus, and exiting the bus using hula hoops to denote proper body space distance in lining up to enter the bus.

DATA COLLECTION
In order to have data to determine the effectiveness of PBIS, schools need to have and use an office discipline referral form. The PBIS team and staff will decide “What behaviors are an instant trip to the office and what behaviors are taken care of in the classroom.” It is very important that every staff member is consistent. If it is not permissible to use a cell phone in band class then it has to not be permissible in art class.

REINFORCEMENT SYSTEM
Another essential feature of PBIS is positive reinforcement or a “gotcha” program. The gotchas are a system for labeling appropriate behavior (E.g., Caught Being Good, reward tickets, Blue Ribbon Notes). Some schools use NCR paper for gotchas with one copy going home to parents, one to the classroom teacher, and one to the principal for weekly drawings.

Top 10 Behavior Management Strategies
1. Minimize crowding and distraction (classroom environment)
2. Structure and predictability is maximized (schedule)
3. 3-5 positively stated expectations (class agreements/rules)
4. More frequent acknowledgement of appropriate behaviors (4 to 1 ratio)
5. Multiple opportunities to respond (think-pair-share, writing, drawing, etc.)
6. Instruction actively engages students (diverse learning styles, multiple intelligences)
7. Teacher actively supervises the classroom
8. Ignore behaviors or quick, direct, explicit reprimands/redirections
9. Multiple strategies/systems for acknowledging appropriate behaviors
10. Specific feedback in response to social and behavioral errors

Resources:
Northwest PBIS Network: http://www.pbisnetwork.org/
OSEP Center on PBIS: http://www.pbisnetwork.org/
Bret Walker, Bridget: walkerb@seattleu.edu, Hoyt, Lisa: lisa.hoyt@rentonschools.us
High-quality kindergarten programming hinges on fostering children’s development and learning in all domains—physical, social-emotional, cognitive, and language.

Cognitively, kindergartners show more flexibility in their thinking than younger children and greater advances in reasoning and problem solving (NAEYC 2009). Kindergarteners tend to retain concepts best when presented in contexts meaningful to them. As a result, active, experience-based learning, while good for all ages, is key to this period of development.

Socially and emotionally, forming and sustaining relationships with adults and other children is central to a young child’s development. Studies show that children who fail to develop minimal social skills, suffer neglect or rejection from peers, and are at risk for later outcomes such as school dropout, delinquency, and mental health problems (Dodge et al. 2003; McClelland, Acock & Morrison 2006). Entering kindergartners vary in their ability to self-regulate by intentionally controlling emotions, behaviors, and thoughts (Tomlinson in Copple & Bredekamp 2009). It is important for their teachers to minimize sources of frustration, overstimulation, and stress in the environment that might be more than young children can handle.

Physically, kindergartners become increasingly more competent in physical skills such as balance and eye-hand coordination. Many kindergartners initially struggle with fine motor tasks such as writing, drawing and precise cutting. Five and six-year-olds benefit from many opportunities to practice, including painting, working with clay, constructing with blocks, stringing beads, zipping, buttoning, using scissors, and pouring juice at snack time. They are also becoming more competent in their gross motor skills and can skip, hop and climb with ease by the end of their kindergarten year.

Language and vocabulary skills of kindergartners vary widely. Kindergartners can generally answer open-ended questions (e.g., “What would you fix for dinner if you were the cook?”) with relatively complex sentences, can retell a story or relay details about an experience or event, and can participate appropriately in conversations. Their vocabularies are growing at a fast pace and they still make frequent incorrect generalizations and grammatical errors when they speak (e.g., “Look at all of those deers.”)

1 Excerpt from New Jersey Department of Education, Division of Early Childhood Education, New Jersey Kindergarten Implementation Guidelines, Release Date April 1, 2011, pg. 7
The Five Year Old in the Classroom¹	Early Five-Year-Olds: Growth Patterns	Older Five-Year-Olds: Growth Patterns
Physical | • Focus visually on objects close at hand
• Need lots of physical activity, including free play
• Better control of running, jumping, and other large movements; still awkward with writing, handcrafts, and other small movements
• Pace themselves well, resting before they're exhausted
• Often fall out of chair sideways | • Tend to be physically restless and to tire easily
• Awkwardly perform tasks requiring fine motor skills
• Vary their pencil grip
• Tilt their head to their non-dominant side when writing
• Complain that their hand gets tired from holding their pencil
• Often stand up to work |
Social | • Like to help; cooperate, follow rules, and be “good”; want adult approval
• Need routines, along with consistent rules and discipline; respond well to clear and simple expectations
• Dependent on authority; but also have trouble seeing things from another’s viewpoint
• Need verbal permission from adults; before doing something, will ask, “Can I …?” | • Oppositional, not sure whether to be good or naughty
• Insecure with feelings and tentative in actions
• Complain, test authority and limits, and strike out with temper tantrums
• Behave wonderful at home and terribly at school; or vice-versa
• Equivocate, switching answers from “yes” to “no” and vice versa |
Language | • Literal, using and interpreting words in their usual or most basic sense: “We’re late—we’ve got to fly!” means “We’ve got to take to the air like birds!”
• Express themselves in few words; “play” and “good” are favorites
• Often do not talk about school happenings at home
• Express fantasy more through actions and less through words than at four
• Think out loud—that is, they talk their thoughts | • Begin giving more elaborate answers to questions
• Tend to use more words than necessary to convey an idea
• Frequently makes auditory reversals (answers first what was heard last)
• Often read out loud even when asked to read silently |
Cognitive | • Like to copy and repeat activities
• Often see only one way to do things
• Bound cognitively by their senses; not ready to understand abstract concepts such as “fairness”
• Ascribe life and movement to inanimate objects such as stuffed animals
• Learn best through active play and hands-on activities
• Think intuitively rather than logically; for example, “It’s windy when the trees shake, so it must be the shaking of the trees that makes the wind” | • Begin to try new activities more easily
• Make lots of mistakes and recognizes some of them
• Learn well from direct experience |

Excerpted from YARDSTICKS Children in the Classroom Ages 4-14: A Resource for Parents and Teachers, Wood, Chip. 2007. P 62-68
<table>
<thead>
<tr>
<th>The Five Year Old in the Classroom</th>
<th>Early Five-Year-Olds: Growth Patterns</th>
<th>Older Five-Year-Olds: Growth Patterns</th>
</tr>
</thead>
</table>
| **Vision and Fine Motor Ability** | • Still developing left-to-right visual tracking, so they tend to focus on one word at a time when reading; often need to use a pointer or their finger to keep their place
• Still having difficulty copying from the board
• Occasionally reverse letters and numbers (either swapping positions, as in writing “of” for “to,” or drawing the letters themselves backwards so that a “d,” for example, looks like a “b”); teachers can help by accepting these reversals without comment, rather than correcting
• Ready for an introduction to manuscript printing; not able to stay within lines
• Find it hard to space letters, numbers, and words; using a finger as a separator helps | • Print less neatly and with more reversals than earlier in the year
• Grasp pencil very firmly; placing pencil grips on their pencils to encourage relaxation
• Reverse letters and numbers with increasing frequency; may find reading and writing activities extremely frustrating if not closely related to their interests |
| **Gross Motor Ability** | • Continued need for a great deal of active outdoor and indoor physical activity
• Good age for structured games—Duck, Duck, Goose, Red Light, Green Light, etc. | • Need a good deal of physical activity and relaxed free play outside because attention is not always focused in a structured gym class
• Tire quickly, sometimes necessitating shorter work periods than at five |
| **Cognitive Growth** | • Learn best through repetition; likes to repeat stories, poems, songs, games, sometimes with minor variations; enjoy similar math and science tasks; need predictable daily schedules
• Some become stuck in repetitive behavior (i.e., infinite rainbows and flowers) for fear of making mistake when trying something new
• Learn best through active exploration of concrete materials—blocks, manipulatives, paint, arts and crafts, sand and water
• Seldom able to see things from another’s point of view
• Think out loud; will say, for example, “I’m going to move the truck!”; before doing so | • Still use language to initiate action (“I’m going to pet the dog”); begin to explain in more detail
• Need many avenues—building with blocks, painting, working with clay—to express what they know
• Need time to try their own ways of doing things, even though these ways may not prove productive
• Crave constant validation of their initiative |
| **Social-Emotional Behavior** | • Can work at quiet, sitting activities for 15-20 minutes at a time
• Often need teacher’s release to move to next task, though they can pace themselves while doing a given task
• Feel safe with consistent guidelines and carefully planned periods
• Express thought through action; need opportunities to play in housekeeping or other dramatic play corners
• Learn and practice language skills through teacher modeling and directed role play, as well as dramatic play | • Need consistent rules and discipline even more than earlier in the year
• Because children are testing limits more, harsh discipline (especially for mistakes) can be devastating; they respond better to frequent reminders and redirection (“Jimmy, what do you need to do to clean up?” “Lisa, hands in your lap.”)
• Teacher’s use of frequent questioning and redirecting works better now than at five |
Family and Relationships

Relationships

All learning happens in relationships, and all relationships are influenced by communication (see Table 1). Therefore, every interaction a child has with parents, caregivers, childcare professionals, teachers, and other important adults’ influences how the child’s brain absorbs, processes, and uses information. While it is true that a child’s natural curiosity and self-led exploration should be supported, the child’s experiences need to be appropriately scaffold by adults who have relationships with them. These “serve and return” interactions, where both partners play a part in an unfolding interaction, help prepare the child to learn to communicate both verbally and non-verbally, and to develop other skills that support literacy and math.

When children have access to a safe, responsive, warm, sensitive and consistent caregiving, a secure attachment can develop. This promotes a well-regulated social-emotional system in the child, and the child learns that other adults can be trusted sources of positive emotion and helpful with information about the world. (Stark & Chazan-Choen, 2012). Securely attached children will also be able to learn by exploring and investigating the world, and treat the caregiver as a safe and secure base for that exploration. Parents of securely-attached children will also do more to connect children with rich interactive experiences, with books and objects to enhance those experiences. Attributes of the child-caregiver relationship predicts future literacy or math skills (Cligenpeel & Pianta, 2007). Thus, all adults who care for children need to be supportive to ensure the establishment of strong and healthy attachments, so that attachment-based difficulties will not get in the way of future literacy or math development.

Some resources on ways to build early relationships:

- http://pfrprogram.org/
- http://circleofsecurity.net/
- http://csefel.vanderbilt.edu/documents/rs_infant_mental_health.pdf
Table 1: Relationships

<table>
<thead>
<tr>
<th>Parents and Family Members</th>
<th>Caregivers and Pre-K Teachers</th>
<th>K-3 Caregivers and Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reinforcement of family’s role as a child’s first and most important teacher</td>
<td>• Strategies to help children learn and grow</td>
<td>• Common language to communicate early learning needs</td>
</tr>
<tr>
<td>• Ways to reflect on their own child, and their relationships</td>
<td>• Examples of how to connect with families, including at-home activities</td>
<td>• Staff support for cultural literacy</td>
</tr>
<tr>
<td>• Example activities for how to support optimal learning in everyday situations</td>
<td>• Tips to reach out to primary grade teachers to facilitate smooth transitions</td>
<td>• Resources to help cultivate student learning outside the school setting</td>
</tr>
<tr>
<td>• Information for better understanding the Pre-K and K-12 systems</td>
<td>• Resources created in harmony with the state standards including information about social/ emotional development.</td>
<td>• Ways to increase focus on the role of family and culture</td>
</tr>
<tr>
<td>• Talking points for discussion with caregivers and teachers</td>
<td>• Ways to embed the Common Core Standards into practice</td>
<td>• Current and culturally inclusive research on child development and best practices</td>
</tr>
</tbody>
</table>

For All Groups Interacting with or Working on Behalf of Children

| Encouragement to foster family and community traditions, languages, and activities | General timelines for key areas of child development | Ways to reflect on the quality of formal and informal learning environments |
| Key skills organized by age and areas of development | Ways to include healthcare providers to consider broad areas of emotional and cognitive development | Specific descriptions of abilities and behavior, and ideas to try |

Communication

Within secure relationships, infants can make their first communication with responsive caregivers, such as by turning toward the source of a familiar language or voice from birth, by cooing and smiling, calming down after being upset, babbling and imitating different sounds and vocal pitches. How young children play with, use and combine toys and objects is a window into how their brain is organizing information, which relates to stages of language growth. Research supports the use of the home-language to support language acquisition.

Communication grows through the first year as infants pass a ball for several turns, when they look where other people look, when they point to objects, and when they imitate. The more pre-verbal gestures, eye gaze and imitation are used to communicate, the stronger later language will be (Goldin-Meadow, 2007, Brooks & Meltzoff, 2008).

Some resources on ways to build early communication:

- http://communicatingpartners.org
- http://educatenewparents.com
Language

Within these rich communicative interactions within relationships with children, oral language flourishes. Oral language is one of the strongest predictors of literacy development, and its importance cannot be underestimated (Dickinson, 2004). Toddlers who are exposed to large amounts of rich language and diverse vocabulary from adults in their typical environment tend to have bigger vocabularies (Hart & Risely, 1995), and vocabulary size at age 2 years strongly predicts vocabulary size at kindergarten entry (Fenson, et al., 1993). Further, vocabulary at age 3 years is strongly associated with literacy comprehension at the end of Grade 3, and predicts the trajectory of word acquisition that affects later academic learning (Hart & Risley, 2003).

Linguistically rich input enables learning across later academic skills. Teachers need to have adequate training in effective vocabulary teaching practices at early stages, and in optimizing the quantity, quality, and responsiveness of teacher-talk. For instance, when preschool-aged children are exposed to conversations that include more open-ended questions and a greater variety of words, they tend to show more knowledge about print, letter-word recognition, math skills, and sustained attention, all of which are important for school readiness and literacy (Cristofaro & Tamis-Lamonda, 2012). In the classroom setting, teachers monitor student progress, provide evidence-based interventions and adjust the intensity and nature of those interventions based on a student's responsiveness.

The Kindergarten ELP Kindergarten Standards highlight the critical language, knowledge about language, and skills using language that are in college-and-career-ready standards and that are necessary for English language learners (ELLs) to be successful in schools. The standards also include correspondeces to the *Practices and Standards* identified in the *Common Core State Standards* and in the *Next Generation Science Standards* are used to help, inform and differentiate. They are designed to optimize language and literacy instruction to address and prevent gaps in skills and knowledge immediately rather than remediate them later on. The approach uses differentiated assessment and instruction so that each individual learner receives the intensity of instruction he or she needs.

Children will develop a larger vocabulary when they have rich experiences with and exposure to the world around them. Vocabulary and grammar are related to each other, and grammar (past tense, plural, word order, adjectives, verbs, nouns, etc.) can grow once the vocabulary has grown. Storybook sharing is one highly efficient way for young children to acquire new words, because books naturally elicit more rich and diverse language from adults compared to play interactions, particularly in families with lower access to education or resources (Hoff & Shatz, 2007).

In turn, the more words a child knows, the more advanced the ability will be to understand and express complex language, such as through telling and listening to stories, asking and answering questions, and starting and keeping conversations. Those kinds of enhanced language-based experiences makes the process of literacy later in school easier, more effective, and more enjoyable for the child. In addition, larger vocabularies allow children to be more aware of the speech sounds that make up the words (called phonological awareness), which is another important precursor to learning to read, described below.

Some resources on ways to build early language:

- http://www.hepg.org/her/booknote/64
- http://www.pbs.org/teacherline/courses/rdla170/.../fostering_language.pdf
In the **Emergent literacy** period, precursors of literacy are acquired. These are skills and knowledge that not only precede the start of literacy, writing and spelling, but predict them. For children reared in language- and print-rich environments, the emergent literacy period typically takes from birth through the transition to Kindergarten (4-5 years).

Emergent and early literacy skills are an outcome of a fundamentally social process (Bus & van IJzendoorn, 1997). A large body of evidence shows that a wide range of early instructional practices relate to literacy skills. Some P-3 aligned examples of these features are listed here, though this list is not comprehensive:

- The higher the quality of the relationship between parents and their preschoolers predicts the amount and quality of literacy-based information shared during book-literacy in 1st grade (Cligenpeel, et al., 2007).
- The more caregivers’ use labels (*That’s a hat*), expansions (*a BIG hat*), and questions (*then what happens?*) while sharing books with their toddlers, the bigger the child’s vocabulary is at preschool-age (Fletcher, et al., 2008).
- When preschool teachers use more cues to draw students’ attention to aspects of print during books sharing, children’s literacy, spelling, and comprehension showed higher levels 2 years later (Piasta, et al., 2012).

Beyond language-stimulating interactions, literacy early and often with young children is one strong way to support early literacy development (Bus, van IJzendoorn, Pellegrini, 1995). But, **how** literacy is done is just as important as **how often**. Children who experience more dialogic literacy with adults tend to excel in literacy skills. Dialogic literacy is more than just reading the words aloud on the page. It actively engages the child in telling the story, through prompts, expansions, and questions. It is a conversation about the book, while sharing the book itself. Dialogic literacy is a thoroughly documented strategy that empirically advances literacy skills, and is particularly potent with children who are at slightly increased risk to struggle (Arnold & Whitehurst, 1994; Hargrave & Senechal, 2000).

Two specific dialog components that have been shown to support emerging and early literacy are:

Elaborate on the child’s verbal participation
- Prompting with open-ended (*‘honest’*) questions (not test-like).
- Extend children’s contributions by repeating expanding or praising.

Guide children to attend to and learn about key concepts:
- Interesting words & challenging concepts (oral language).
- Print concepts (print and alphabet knowledge).
- Sound patterns (phonological awareness).
School, Family and Community Connections
The Family & Community Partnership Office: Be Informed, Be Prepared, Be Involved

Why Family Engagement is Important
The Federal Way Public Schools Family and Community Partnership Office exists to support students’ success by supporting parents. We work hard to build effective partnerships between parents, community and staff. Research indicates that family engagement is one of the most important factors to a child’s academic achievement. After all, parents know their children better than anyone else.

Family engagement can take many forms. It may involve activities in the school, at home, or even at another location as described in the brief relationship continuum (see Table 1 on page 8-2). If you don’t think you have the time, energy, or personality to be involved with your child’s school – please read “You Can Promote Your Student’s Success in School.”

To become more aware of how you as a parent can support your child’s academic success, please review the Partnership 101 booklet (offered in many languages), or find it at the Parent Leadership Institute website.
Instruction and Standards

Content standards describe the knowledge and skills learners will need to know and be able to do at the end of the kindergarten year. Each of the standards describes a series of sub-skills that build upon the next learning skill, in order for a child to be prepared and ready for the beginning of first grade. One standard is not more important than the next. Within each standard are a series of skills or learning progressions that are needed to build a pathway between grade bands. Standards establish clear, consistent guidelines for every student, to ensure students are prepared for a career or college. The standards also provide a way for teachers to measure student progress throughout the year. Consistent standards across the district provide teachers, parents, and students with a set of clear expectations, promoting equity and access. Importantly, the standards promote an integrated approach that ensures all content areas are responsible for literacy development.

The Common Core State Standards (CCSS) are designed to:

- Ensure all students and teachers are held to consistent, high expectations.
- Ensure students graduate with the skills to make them competitive on a national and international level.
- Provide clear and focused guideposts for all students, families, and teachers.

What is a priority standard?

Priority standards are “key learnings” that will prepare students for the next grade level, district, state, and national assessments, and more importantly, for life.

Teachers design their lessons to teach the skills and knowledge that students need to master the priority standards. Students are graded through assessments of their skills and knowledge in each priority standard.

How are they determined?

Priority standards were identified from state, national and international standards by teams of K – 12 Federal Way teachers, principals, and instructional coaches. To ensure a consistent, comprehensive, and systemic process, power standards went through two phases of review, feedback and revisions. They are reviewed and adjusted as needed on a yearly basis.

The criteria used to identify the most essential priority standards include:

- **Endurance**: Standards that provide students with knowledge and skills beyond a single test date.
- **Leverage**: Standards that provide knowledge and skills that will be valuable in multiple disciplines or content areas. For example, nonfiction writing prepares a student not only for writing but science, social studies, and more.
- **Readiness**: Standards that provide knowledge and skills for success in the next grade or level of instruction.

Resources:
Adapted from and developed by Vaughn Gross Center (2010): Differentiated Instruction: Part 1. University of Texas at Austin. Texas Education Agency/University of Texas System. www.centeroninstruction.org
Instruction is a multidimensional approach with five dimensions in which differentiation can occur to meet the needs of all learners:

- The content includes the knowledge and skills that we teach in order to meet the end of year standards through a series of learning progressions throughout the year.

- Each learning progression is identified as developmentally appropriate as we plan for teaching, meeting the specific needs of each learner.

- Effective instruction has several dimensions: instructional delivery, including explicit or direct, systematic instruction, and with timely/relevant feedback.

- Time spent within the dimensions of instruction will vary based on the pacing and students demonstration of learning. Evidence of learning will determine how much time we spend in a guided, whole, or small group approach. Just as content and delivery models are differentiated, so can time.

- Features of effective teaching are presented by explicitly and systematically modeling with appropriate scaffolding to maximize instructional time and student success. Instruction includes: multiple opportunities for the students to respond, effective timely/ relevant feedback, and appropriate pacing.

Three Pillars of Effective Differentiation

<table>
<thead>
<tr>
<th>Philosophy</th>
<th>Principles</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regarding diversity as normal and valuable</td>
<td>Creating environments that are catalysts for learning</td>
<td>Planning proactively to address readiness, interest, and learning profile</td>
</tr>
<tr>
<td>Seeing every learner’s potential for academic success</td>
<td>Building on a foundation of a quality curriculum</td>
<td>Basing instructional approaches on student needs and the nature of the content</td>
</tr>
<tr>
<td>Accepting responsibility for maximizing each learner’s progress</td>
<td>Using assessment to inform teaching and learning</td>
<td>Teaching up</td>
</tr>
<tr>
<td>Recognizing and removing barriers that deny many learners equal access to excel</td>
<td>Tailoring instruction to assessment-indicated student needs</td>
<td>Assigning respectful tasks</td>
</tr>
<tr>
<td>Leading and managing a flexible classroom</td>
<td>Using flexible grouping</td>
<td></td>
</tr>
</tbody>
</table>

The Traditional vs. Differentiated Classroom

<table>
<thead>
<tr>
<th>The Traditional Classroom</th>
<th>The Differentiated Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student differences are often masked or acted upon when problematic.</td>
<td>Student differences are valued and studied as basis for planning.</td>
</tr>
<tr>
<td>Assessment is most common at the end of learning to see who “got it.”</td>
<td>Assessment is ongoing and diagnostic to understand how to make instruction more responsive to learner needs.</td>
</tr>
<tr>
<td>A relatively narrow sense of intelligence prevails.</td>
<td>Focus on a range of intelligences is evident.</td>
</tr>
<tr>
<td>The teacher believes some students are smart and some are not smart and teaches accordingly.</td>
<td>The teacher believes all students have the capacity to succeed and supports that belief through “teaching up” and differentiated instructional plans.</td>
</tr>
<tr>
<td>A single definition of excellence exists.</td>
<td>Excellence is defined in terms of both individual growth and recognized norms.</td>
</tr>
<tr>
<td>Student interest is infrequently tapped.</td>
<td>Students are frequently guided and supported in making interest based choices.</td>
</tr>
<tr>
<td>Relatively few approaches to learning are offered.</td>
<td>Many approaches to teaching and learning are consistently evident.</td>
</tr>
<tr>
<td>Whole class instruction dominates.</td>
<td>Many instructional groupings are used.</td>
</tr>
<tr>
<td>Coverage of texts, curriculum guides, or content goals define the limits of instruction.</td>
<td>Student readiness, interest, and approach to learning guide instructional plans.</td>
</tr>
<tr>
<td>The focus of learning is the mastery of facts or the use of skills out of context.</td>
<td>Use of essential knowledge and essential skills to achieve or extend essential understandings is the focus of learning.</td>
</tr>
<tr>
<td>Single option assignments are the norm.</td>
<td>Multi-option assignments are common.</td>
</tr>
<tr>
<td>Time is relatively inflexible.</td>
<td>Time is used flexibly and in accordance with student needs.</td>
</tr>
<tr>
<td>A single text prevails.</td>
<td>Multiple materials and other resources are provided.</td>
</tr>
<tr>
<td>A single interpretation of ideas or events or single right answers are typically sought.</td>
<td>Multiple perspectives on ideas, issues, and events are routinely sought.</td>
</tr>
<tr>
<td>The teacher directs student behavior.</td>
<td>The teacher facilitates development of student skills of self-reliance and collaboration.</td>
</tr>
<tr>
<td>The teacher solves most classroom problems.</td>
<td>Students help other students and the teacher solve problems.</td>
</tr>
<tr>
<td>A single form of assessment is most often used.</td>
<td>Students are assessed in multiple ways and in modes.</td>
</tr>
<tr>
<td>The grading process communicates only performance not process or progress.</td>
<td>The grading process reflects student performance, work processes, and growth.</td>
</tr>
</tbody>
</table>

Foundational Ideas for The 5 Dimensions of Teaching and Learning instructional framework

The 5 Dimensions of Teaching and Learning instructional Framework (5D) and the 5D+ Teacher Evaluation Rubric are key components in accomplishing the mission of the Center for Educational Leadership (CEL). Collectively, as an organization and across our district partnership, we are dedicated to eliminating the achievement gap that continues to divide our nation’s children along the lines of race, class, language, and disability. We continue to stand in awe of how hard teachers and leaders work every day on behalf of the students in their schools. The partnership between FWPS and CEL is grounded in the foundational idea that guides CEL’s theory of action for quality instruction.

Our Instructional Framework

The 5 Dimensions of Teaching and Learning (5D) work is built on an evidence-based instructional framework. The 5D was developed when CEL’s faculty conducted a thorough review of the literature in both the learning sciences and effective teaching practices, and mined the instructional expertise from some of the very best teachers and school leaders in Washington and across the country. The 5D framework provides critical questions for school and district leaders to consider as they observe the teaching and learning process and builds on:

- **Purpose**: Setting a clear, meaningful course for student learning
- **Student engagement**: Encouraging substantive, intellectual thinking
- **Curriculum and pedagogy**: Ensuring that instruction challenges and supports all students.
- **Assessment for student learning**: Using ongoing assessment to shape and individualize instruction
- **Classroom environment and culture**: Creating classrooms that maximize opportunities for learning and engagement

Our 5D framework helps teachers and district leaders develop a common language and a shared vision as they undertake the hard work of improving student achievement.

Resource:

2013 University of Washington Center for Educational Leadership. 5D, 5D+, “5 Dimensions of Teaching and Learning”. http://www.k-12leadership.org/
Federal Way Public Schools uses CEL5D+ framework to guide teachers’ instruction.

5 Dimensions of Teaching and Learning™

Instructional Framework Version 4.0

<table>
<thead>
<tr>
<th>SD™</th>
<th>Subdimension</th>
<th>The Vision</th>
<th>Guiding Questions</th>
</tr>
</thead>
</table>
| | Standards | - The lesson is based on grade-level standards, is meaningful and relevant beyond the task at hand (e.g., relates to a broader purpose or context such as problem-solving, citizenship, etc.), and helps students learn and apply transferable knowledge and skills.
- The lesson is intentionally linked to other lessons (previous and future) in support of students meeting standard(s). | - How do the standard and learning target relate to content knowledge, habits of thinking in the discipline, transferable skills, and students’ assessed needs as learners (re: language, culture, academic background)?
- How do the standard and learning target relate to the ongoing work of this classroom? To the intellectual lives of students beyond this classroom? To broader ideals such as problem-solving, citizenship, etc.? | |
| | Purpose | - The learning target is clearly articulated, linked to standards, embedded in instruction, and understood by students.
- The learning target is measurable. The criteria for success are clear to students and the performance tasks provide evidence that students are able to understand and apply learning in context.
- The teaching points are based on knowledge of students’ learning needs (academic background, life experiences, culture and language) in relation to the learning target(s). | - What is the learning target(s) of the lesson? How is it meaningful and relevant beyond the specific task/activity?
- Is the task/activity aligned with the learning target? How does what students are actually engaged in doing help them to achieve the desired outcome(s)?
- How are the standard(s) and learning target communicated and made accessible to all students?
- How do students communicate their understanding about what they are learning and why they are learning it?
- How does the learning target clearly communicate what students will know and be able to do as a result of the lesson? What will be acceptable evidence of student learning?
- How do teaching point(s) support the learning needs of individual students in meeting the learning target(s)? | |
| | Intellectual Work | - Students’ classroom work embodies substantive intellectual engagement (reading, thinking, writing, problem-solving and meaning-making).
- Students take ownership of their learning to develop, test and refine their thinking. | - What is the frequency of teacher talk, teacher-initiated questions, student-initiated questions, student-to-student interaction, student presentation of work, etc.?
- What does student talk reveal about the nature of students’ thinking?
- Where is the locus of control over learning in the classroom? | |
| | Engagement Strategies | - Engagement strategies capitalize on and build upon students’ academic background, life experiences, culture and language to support rigorous and culturally relevant learning.
- Engagement strategies encourage equitable and purposeful student participation and ensure that all students have access to, and are expected to participate in, learning. | - What evidence do you observe of student engagement in intellectual, academic work? What is the nature of that work?
- What is the level and quality of the intellectual work in which students are engaged (e.g., factual recall, procedure, inference, analysis, meta-cognition)?
- What specific strategies and structures are in place to facilitate participation and meaning-making by all students (e.g., small group work, partner talk, writing, etc.)?
- Do all students have access to participation in the work of the group? Why/why not? How is participation distributed?
- What questions, statements, and actions does the teacher use to encourage students to share their thinking with one another, to build on one another’s ideas, and to assess their understanding of one another’s ideas? | |
| | Talk | - Student talk reflects discipline-specific habits of thinking and ways of communicating.
- Student talk embodies substantive and intellectual thinking. | |
<table>
<thead>
<tr>
<th>SD™ Subdimension</th>
<th>The Vision</th>
<th>Guiding Questions</th>
</tr>
</thead>
</table>
| **Curriculum** | - Instructional materials (e.g., tests, resources, etc.) and tasks are appropriately challenging and supportive for all students, are aligned with the learning target and content area standards, and are culturally and academically relevant.
- The lesson materials and tasks are related to a larger unit and to the sequence and development of conceptual understanding over time. | - How does the learning in the classroom reflect authentic ways of reading, writing, thinking and reasoning in the discipline under study? (e.g., How does the work reflect what mathematicians do and how they think?)
- How does the content of the lesson (e.g., text or task) influence the intellectual demand (e.g., the thinking and reasoning required)? How does it align to grade-level standards?
- How does the teacher scaffold the learning to provide all students with access to the intellectual work and to participation in meaning-making?
- What does the instruction reveal about the teacher’s understanding of how students learn, of disciplinary habits of thinking, and of content knowledge?
- How is students’ learning of content and transferable skills supported through the teacher’s intentional use of instructional strategies and materials?
- How does the teacher differentiate instruction for students with different learning needs—academic background, life experiences, culture and language? |
| **Teaching Approaches and/or Strategies** | - The teacher makes decisions and utilizes instructional approaches in ways that intentionally support his/her instructional purposes.
- Instruction reflects and is consistent with pedagogical content knowledge and is culturally responsive, in order to engage students in disciplinary habits of thinking.
- The teacher uses different instructional strategies, based on planned and/or in-the-moment decisions, to address individual learning needs. | |
| **Scaffolds for Learning** | - The teacher provides scaffolds for the learning task that support the development of the targeted concepts and skills and gradually release responsibility, leading to student independence. | |
| **Assessment** | - Students assess their own learning in relation to the learning target.
- The teacher creates multiple assessment opportunities and expects all students to demonstrate learning.
- Assessment methods include a variety of tools and approaches to gather comprehensive and quality information about the learning styles and needs of each student (e.g., anecdotal notes, conferring, student work samples, etc.).
- The teacher uses observable systems and routines for recording and using student assessment data (e.g., charts, conferring records, portfolios, rubrics).
- Assessment criteria, methods and purposes are transparent and match the learning target. | - How does the instruction provide opportunities for all students to demonstrate learning? How does the teacher capitalize on those opportunities for the purposes of assessment?
- How does the teacher gather information about student learning? How comprehensive are the sources of data from which he/she draws?
- How does the teacher’s understanding of each student as a learner inform how the teacher pushes for depth and stretches boundaries of student thinking?
- How do students use assessment data to set learning goals and gauge progress to increase ownership in their learning?
- How does the teacher’s instruction reflect planning for assessment?
- How does the teacher use multiple forms of assessment to inform instruction and decision-making?
- How does the teacher adjust instruction based on in-the-moment assessment of student understanding? |
| **Adjustments** | - The teacher uses formative assessment data to make in-the-moment instructional adjustments, modify future lessons, and give targeted feedback to students. | |
| **Use of Physical Environment** | - The physical arrangement of the room (e.g., meeting area, resources, student seating, etc.) is conducive to student learning.
- The teacher uses the physical space of the classroom to assess student understanding and support learning (e.g., teacher moves around the room to observe and confer with students).
- Students have access to resources in the physical environment to support learning and independence (e.g., libraries, materials, charts, technology etc.). | - How does the physical arrangement of the classroom, as well as the availability of resources and space to both the teacher and students, purposefully support and scaffold student learning?
- How and to what extent do the systems and routines of the classroom facilitate student ownership and independence?
- How and to what extent do the systems and routines of the classroom reflect values of community, inclusivity, equity and accountability for learning?
- What is the climate for learning in this classroom? How do relationships (teacher-student, student-student) support or hinder student learning?
- What do discourse and interactions reveal about what is valued in this classroom?
- What are sources of status and authority in this classroom (e.g., reasoning and justification, intellectual risk-taking, popularity, aggressiveness, etc.)? |
| **Classroom Routines and Rituals** | - Classroom systems and routines facilitate student responsibility, ownership and independence.
- Available time is maximized in service of learning. | |
| **Classroom Culture** | - Classroom discourse and interactions reflect high expectations and beliefs about all students’ intellectual capabilities and create a culture of inclusivity, equity and accountability for learning.
- Classroom norms encourage risk-taking, collaboration and respect for thinking. | |
Expanding the Definition of Literacy & Instructional Practice

Literacy development is a broad range of skills and knowledge necessary to be truly literate:

- The integration of language, listening, speaking, reading, writing, and critical thinking across all media types;
- The knowledge to recognize and use language appropriate to a situation;
- The ability to think, create, question, solve problems, and reflect.

Though Washington State’s definition does not explicitly call attention to the foundations of literacy, it is inclusive of the following literacy components: Oral language, phonemic awareness, phonics, fluency, vocabulary, comprehension, spelling, writing, listening, speaking, and technology (includes media, viewing), and critical thinking. It is in direct correlation with the Common Core State Standards. It is a belief that we can use an integrated approach to addressing the literacy components through a “Balanced Literacy” approach.

What is “Balanced Literacy”?

Balanced literacy is defined in a number of different ways depending on the source. Some say it is the balance between phonics (skill) instruction and whole language (meaning centered) instruction. Others talk about the balance between the different aspects of literacy; in the Common Core world this means a balance between reading, writing, listening, speaking, language, and foundational skill development. Another aspect of balance might be the ratio of literary versus informational reading and writing. Finally, we may find ourselves striving to balance our whole group, small group, and independent learning structures.

In Federal Way we consider all of the above to be an essential part of our literacy model. The heart of our model is that instruction must be designed to meet the needs of many unique learners and their success cannot be attained through a “one size fits all” program. In general, a balanced literacy approach is often achieved through an integrated “workshop” model that encompasses both reading, writing, language, speaking and listening. However, we also recognize there are times when a more direct instructional approach is required, with emphasis on subskills needed to be successful readers and writers. This document describes briefly a flexible, balanced approach to teaching literacy based on the teacher’s knowledge of their learners and where students need to be on the trajectory toward college and career readiness. With this knowledge in hand the teacher can then use the most appropriate tools, strategies, and structures to design the best pathway to facilitate success.
The reading cube illustrates the essential elements of the reading based on National Reading Panel. This graphic is from our Washington State K-12 Reading Model. The five essential components of effective reading instruction make up the face of the cube, and the three tiers (multi-level system of support) form the top of the cube. All instruction should be aligned with the content standards. On the right side of the cube we have first, universal screening. Then, progress monitoring and diagnostic across the top. A diagnostic assessment is administered to students who demonstrate little or no response to instruction or when more information is needed to make instructional service decisions.

Standards to Support Literacy Instruction

When attending to the ELA shifts of the Common Core State standards it is important to note comprehensive literacy includes pre-literacy, reading, and writing skills for all students, including disadvantaged students, limited-English proficient students and students with disabilities from birth to grade 12.

Culturally responsive literacy practices are embedded in the shifts along with an increased focus on oral language.

SHIFTS FOR ELA:

<table>
<thead>
<tr>
<th>Shift 1</th>
<th>Balancing Information & Literacy Text</th>
<th>Students read a true balance of informational and literary texts. Connect the students to the world in science, social studies, the arts and literature through text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift 2</td>
<td>Teaching literacy in content areas</td>
<td>Students build knowledge about the world (domains/content areas) through TEXT rather than the teacher or activities.</td>
</tr>
<tr>
<td>Shift 3</td>
<td>Text complexity increases in each grade</td>
<td>Students read the central, grade appropriate text around which instruction is centered. More time and guidance for close and careful reading. Support is provided for students reading below grade level and English Language Learners.</td>
</tr>
<tr>
<td>Shift 4</td>
<td>Text-based Answers</td>
<td>Students engage in rich and rigorous conversations about text. Students will develop skills to make evidence-based arguments in discussion and writing.</td>
</tr>
<tr>
<td>Shift 5</td>
<td>Writing using evidence</td>
<td>Writing emphasizes use of evidence from a variety of sources to inform or make an argument.</td>
</tr>
<tr>
<td>Shift 6</td>
<td>Academic Vocabulary</td>
<td>Students constantly build the transferable vocabulary they need to access grade level complex texts. Focus on vocabulary that crosses content areas.</td>
</tr>
</tbody>
</table>
FWPS - ELA CCSS KINDERGARTEN STANDARDS

• Creating a common roadmap of support for a child or student success in and out of school while expanding the connections to the community
• Enabling collaboration across and within development, grade level, and content areas
• Aligning instructional materials and strategies to individual child and student needs
• Leveraging assessment data to identify where instructional supplements and teacher training are needed

By aligning strategies, instructional materials, and assessments to standards, students will reap the benefits of a consistent, cohesive, and sequential education.

Curriculum should be viewed as a tool to support the teaching of standards and create a high quality teaching and learning environment for all students. By aligning strategies, instructional materials, students’ funds of knowledge, and assessments to standards, students will reap the benefits of consistent, cohesive and sequential education.
Kindergarten ELA – CCSS

Foundational Skills
Print concepts
@K.RF.1 Demonstrate understanding of the organization and basic features of print.

Phonological Awareness
@K.RF.2 Demonstrate understanding of spoken words, syllables, and sounds (phonemes).

Phonics and Word Recognition
@K.RF.3 Know and apply grade-level phonics and word analysis skills in decoding words.

Fluency
@K.RF.4 Read emergent-reader texts with purpose and understanding.

Reading Literature
Key Ideas and Details
@K.RL.1: Ask and answer questions about key details in a text (with prompting and support).
@K.RL.2: Retell familiar stories, including key details (with prompting and support).
K.RL.3: Identify characters, setting and major events in a story (with prompting and support).

Craft and Structure
K.RL.4: Ask and answer questions about unknown words in text.
K.RL.5: Recognize common types of texts (e.g., storybooks, poems).
K.RL.6: Name the author and illustrator of a story and define the role of each in telling the story (with prompting and support).

Integration of Knowledge and Ideas
K.RL.7: Describe the relationship between illustrations and the story in which they appear (e.g., what moment in a story an illustration depicts).
K.RL.8: Not applicable to literature.
@K.RL.9: Compare and contrast the adventures and experiences of characters in familiar stories.

Range of Reading and Level of Text Complexity
K.RL.10: Actively engage in group reading activities with purpose and understanding.

Reading Informational Text:
Key Ideas and Details
@K.RI.1: With prompting and support, ask and answer questions about key details in a text.
@K.RI.2: With prompting and support, identify the main topic and retell key details of a text.
K.RI.3: With prompting and support, describe the connection between two individuals, events, ideas, or pieces of information in a text.

Craft and Structure
K.RI.4: With prompting and support, ask and answer questions about unknown words in text.
K.RI.5: Identify the front cover, back cover, and title page of a book.
K.RI.6: Name the author and illustrator of a text and define the role of each in presenting the ideas or information in a text.

Integration of Knowledge and Ideas
K.RI.7: With prompting and support, describe the relationship between illustrations and the text in which they appear (e.g., what person, place, thing, or idea in the text an illustration depicts).
K.RI.8: With the prompting and support, identify the reasons an author gives to support points in a text.
@K.RI.9: With prompting and support, identify basic similarities in and differences between two texts on the same topic (e.g., in illustrations, descriptions, or procedures).

Range of Reading and Level of Text Complexity
K.RI.10: Actively engage in group reading activities with purpose and understanding.
Writing

Text Types and Purposes
K.W.1 Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book (e.g., My favorite book is ...).
K.W.2 Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.
K.W.3 Use a combination of drawing, dictating, and writing to narrate a single event or several loosely linked events, tell about the events in the order in which they occurred, and provide a reaction to what happened.

Production and Distribution of Writing
K.W.4 (Beginns in grade 3)
K.W.5 With guidance and support from adults, respond to questions and suggestions from peers and add details to strengthen writing as needed.
K.W.6 With guidance and support from adults, explore a variety of digital tools to produce and publish writing, including in collaboration with peers.

Research to Build and Present Knowledge
K.W.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them).
K.W.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question.
K.W.9 (Beginns in grade 4)

Range of Writing
K.W.10 (Beginns in grade 3)

Language

Conventions of Standard English
K.L.1 Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.
K.L.2 Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.

Knowledge of Language
K.L.3 (Beginns in grade 2) Vocabulary Acquisition and Use
K.L.4 Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on kindergarten reading and content.
K.L.5 With guidance and support from adults, explore word relationships and nuances in word meanings.
K.L.6 Use words and phrases acquired through conversations, reading and being read to, and responding to texts.

Speaking and Listening

Comprehension and Collaboration
K.SL.1 Participate in collaborative conversations with diverse partners about kindergarten topics and texts with peers and adults in small and larger groups. Follow agreed-upon rules for discussions (e.g., listening to others and taking turns speaking about the topics and texts under discussion).
Continue conversations through multiple exchanges.
K.SL.2 Confirm understanding of a text read aloud or information presented orally or through other media by asking and answering questions about key details and requesting clarification if something is not understood.
K.SL.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood.

Presentation of Knowledge and Ideas
K.SL.4 Describe familiar people, places, things, and events and, with prompting and support, provide additional detail.
K.SL.5 Add drawings or other visual displays to descriptions as desired to provide additional detail.
K.SL.6 Apply audibly and express thoughts, feelings, and ideas clearly.
Reading Literature *(p) = priority*

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.1</td>
<td>With prompting and support, ask and answer questions about key details in a text.</td>
</tr>
<tr>
<td>(p) RL.K.1</td>
<td>I can ask and answer questions about key details in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.2</td>
<td>With prompting and support, retell familiar stories, including key details.</td>
</tr>
<tr>
<td>(p) RL.K.2</td>
<td>I can retell familiar stories and include key details.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.3</td>
<td>With prompting and support, identify characters, settings, and major events in a story.</td>
</tr>
<tr>
<td>RL.K.3</td>
<td>I can identify characters, settings, and major events.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.4</td>
<td>Ask and answer questions about unknown words in a text.</td>
</tr>
<tr>
<td>RL.K.4</td>
<td>I can ask and answer questions about unknown words in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.5</td>
<td>Recognize common types of texts (e.g., storybooks, poems).</td>
</tr>
<tr>
<td>RL.K.5</td>
<td>I can recognize common types of text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.6</td>
<td>With prompting and support, name the author and illustrator of a story and define the role of each in telling the story.</td>
</tr>
<tr>
<td>RL.K.6</td>
<td>I can name the author, illustrator and define their role.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.7</td>
<td>With prompting and support, describe the relationship between illustrations and the story in which they appear (e.g., what moment in a story an illustration depicts).</td>
</tr>
<tr>
<td>RL.K.7</td>
<td>I can use the illustrations to tell about a story.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.8</td>
<td>(RL.K.8 not applicable to literature).</td>
</tr>
<tr>
<td>RL.K.8</td>
<td></td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.9</td>
<td>With prompting and support, compare and contrast the adventures and experiences of characters in familiar stories.</td>
</tr>
<tr>
<td>(p) RL.K.9</td>
<td>I can compare and contrast the adventures and experiences of characters in familiar stories.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RL.K.10</td>
<td>Actively engage in group reading activities with purpose and understanding.</td>
</tr>
<tr>
<td>RL.K.10</td>
<td>I can actively engage in group reading activities with purpose and understanding.</td>
</tr>
</tbody>
</table>

(p) = priority

FWPS has identified standards titled “priority standards”. Priority standards are identified standards in Federal Way Public Schools that are stressed and assessed for reporting. All standards need to be taught throughout the school year with an emphasis on priority standards.
<table>
<thead>
<tr>
<th>Reading Informational Text</th>
<th>(p) = priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.1</td>
<td>With prompting and support, ask and answer questions about key details in a text.</td>
</tr>
<tr>
<td>(p) RI.K.1</td>
<td>I can ask and answer questions about key details in an informational text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.2</td>
<td>With prompting and support, identify the main topic and retell key details of a text.</td>
</tr>
<tr>
<td>(p) RI.K.2</td>
<td>I can identify the main topic and retell key details in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.3</td>
<td>With prompting and support, describe the connection between two individuals, events, ideas, or pieces of information in a text.</td>
</tr>
<tr>
<td>RI.K.3</td>
<td>I can describe the connection between two individuals, events, ideas, or pieces of information in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.4</td>
<td>With prompting and support, ask and answer questions about unknown words in a text.</td>
</tr>
<tr>
<td>RI.K.4</td>
<td>I can ask and answer questions about unknown words in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.5</td>
<td>Identify the front cover, back cover, and title page of a book.</td>
</tr>
<tr>
<td>RI.K.5</td>
<td>I can identify the front cover, back cover, and title page of a book.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.6</td>
<td>Name the author and illustrator of a text and define the role of each in presenting the ideas or information in a text.</td>
</tr>
<tr>
<td>RI.K.6</td>
<td>I can name the author and illustrator of a text and define the role of each in presenting the ideas or information in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.7</td>
<td>With prompting and support, describe the relationship between illustrations and the text in which they appear (e.g., what person, place, thing, or idea an illustration depicts).</td>
</tr>
<tr>
<td>RI.K.7</td>
<td>I can describe the relationship between illustrations and the text in which they appear (e.g., what person, place, thing, or idea an illustration depicts).</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.8</td>
<td>With prompting and support, identify the reasons an author gives to support points in a text.</td>
</tr>
<tr>
<td>RI.K.8</td>
<td>I can identify the reasons the author gives to support points in a text.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.9</td>
<td>With prompting and support, identify basic similarities in and differences between two texts on the same topic (e.g., in illustrations, descriptions, or procedures).</td>
</tr>
<tr>
<td>(p) RI.K.9</td>
<td>I can identify basic similarities and differences between two texts on the same topic.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RI.K.10</td>
<td>Actively engage in group reading activities with purpose and understanding.</td>
</tr>
<tr>
<td>RI.K.10</td>
<td>I can actively engage in group reading activities with purpose and understanding.</td>
</tr>
</tbody>
</table>

(p) = priority
<table>
<thead>
<tr>
<th>Reading Foundational Skills</th>
<th>(p) = priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.ELA-LITERACY.RF.K.1</td>
<td>Demonstrate understanding of the organization and basic features of print.</td>
</tr>
<tr>
<td>(p) RF.K.1a</td>
<td>I can follow words from left to right, top to bottom, and page by page.</td>
</tr>
<tr>
<td>(p) RF.K.1b</td>
<td>I recognize that spoken words are represented in written language by specific sequences of letters.</td>
</tr>
<tr>
<td>(p) RF.K.1c</td>
<td>I understand that words are separated by spaces in print.</td>
</tr>
<tr>
<td>(p) RF.K.1d</td>
<td>I can recognize and name all upper and lowercase letters in the alphabet.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RF.K.2</td>
<td>Demonstrate understanding of spoken words, syllables, and sounds (phonemes).</td>
</tr>
<tr>
<td>(p) RF.K.2a</td>
<td>I can recognize and produce rhyming words.</td>
</tr>
<tr>
<td>(p) RF.K.2b</td>
<td>I can count, pronounce, blend and segment syllables in spoken words.</td>
</tr>
<tr>
<td>(p) RF.K.2c</td>
<td>I can blend and segment onsets and rimes of single syllable spoken words.</td>
</tr>
<tr>
<td>(p) RF.K.2d</td>
<td>I can isolate and pronounce the beginning, middle and ending sounds in c-v-v words.</td>
</tr>
<tr>
<td>(p) RF.K.2e</td>
<td>I can add or substitute individual sounds in simple, one-syllable words to make new words.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RF.K.3</td>
<td>Know and apply grade-level phonics and word analysis skills in decoding words.</td>
</tr>
<tr>
<td>(p) RF.K.3a</td>
<td>I can demonstrate basic knowledge of one to one letter sound correspondences by producing the primary or many of the most frequent sounds for each consonant.</td>
</tr>
<tr>
<td>(p) RF.K.3b</td>
<td>I can associate the long and short sounds with common spellings for the five major vowels.</td>
</tr>
<tr>
<td>(p) RF.K.3c</td>
<td>I can read common high-frequency words by sight.</td>
</tr>
<tr>
<td>(p) RF.K.3d</td>
<td>I can distinguish between similarly spelled words by identifying the sounds of the letters that differ.</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.RF.K.4</td>
<td>Read emergent-reader texts with purpose and understanding.</td>
</tr>
<tr>
<td>RF.K.4</td>
<td>I can read emergent reader texts with purpose and understanding.</td>
</tr>
</tbody>
</table>

(p) = priority
<table>
<thead>
<tr>
<th>Writing Standards ((p) = \text{priority})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.ELA-LITERACY.K.W.1</td>
</tr>
<tr>
<td>W.K.1</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.2</td>
</tr>
<tr>
<td>((p)) W.K.2</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.3</td>
</tr>
<tr>
<td>((p)) W.K.3</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.5</td>
</tr>
<tr>
<td>W.K.5</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.6</td>
</tr>
<tr>
<td>W.K.6</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.7</td>
</tr>
<tr>
<td>W.K.7</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.W.8</td>
</tr>
<tr>
<td>W.K.8</td>
</tr>
</tbody>
</table>

\((p) = \text{priority}\)
<table>
<thead>
<tr>
<th>Speaking and Listening (p) = priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.1</td>
</tr>
<tr>
<td>(p) SL.K.1</td>
</tr>
<tr>
<td>(p) SL.K.1a</td>
</tr>
<tr>
<td>(p) SL.K.1b</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.2</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.3</td>
</tr>
<tr>
<td>SL.K.2-3</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.4</td>
</tr>
<tr>
<td>SL.K.4</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.5</td>
</tr>
<tr>
<td>SL.K.5</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.SL.6</td>
</tr>
<tr>
<td>(p) SL.K.6</td>
</tr>
<tr>
<td>Language (p) = priority</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>(p) L.K.1</td>
</tr>
<tr>
<td>(p) L.K.1.a</td>
</tr>
<tr>
<td>(p) L.K.1.b</td>
</tr>
<tr>
<td>(p) L.K.1.c</td>
</tr>
<tr>
<td>(p) L.K.1.d</td>
</tr>
<tr>
<td>(p) L.K.1.e</td>
</tr>
<tr>
<td>(p) L.K.1.f</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.L.2</td>
</tr>
<tr>
<td>(p) L.K.2.a</td>
</tr>
<tr>
<td>(p) L.K.2.b</td>
</tr>
<tr>
<td>(p) L.K.2.c</td>
</tr>
<tr>
<td>(p) L.K.2.d</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.L.4</td>
</tr>
<tr>
<td>(p) L.K.4.a</td>
</tr>
<tr>
<td>(p) L.K.4.b</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.L.5</td>
</tr>
<tr>
<td>(p) L.K.5.a</td>
</tr>
<tr>
<td>(p) L.K.5.b</td>
</tr>
<tr>
<td>(p) L.K.5.c</td>
</tr>
<tr>
<td>(p) L.K.5.d</td>
</tr>
<tr>
<td>CCSS.ELA-LITERACY.K.L.6</td>
</tr>
<tr>
<td>(p) L.K.6</td>
</tr>
</tbody>
</table>
Social Studies Unit Outlines – Kindergarten

In kindergarten, students begin their investigation of the world using perspectives, concepts, and skills from the social studies. The context for social studies learning in kindergarten is the student’s interaction with classroom and school. The classroom serves as a microcosm of society in which decisions are made with respect to rights, rules, and responsibilities. They begin to learn the basic concepts of fairness and respect for the rights and opinions of others.

The following pages organize the required social studies standards for kindergarten by a suggested unit plan related to the classroom community. As with the other grade levels, these suggested unit outlines are framed along two dimensions: chronological era and major developments or themes. Civics, economics, geography, and social studies skills are embedded in this framework. They start with possible essential and guiding questions to help frame the unit. The sample guiding questions focus on the specific issues that connect with the particular era, developments, or themes. The sample essential questions are meant to remind us of how the themes and eras addressed in a particular unit relate to timeless important issues and concepts.

Please note that while the standards (in bold) are required, the examples are merely suggestions. Since it would be impossible to address all of the important people, cultures, and events from Washington state history that promotes in-depth understanding, these examples are meant to provide some possible contexts in which to teach these standards. They are not meant to be followed like a recipe or as a one-size-fits-all curriculum. Ultimately, it is up to teachers and administrators in each district to decide how to tailor this course and these examples to their students’ and community’s particular interests and needs. The document is in Word format to facilitate this tailoring. Teachers will have to help decide which themes and developments students will examine deeply and which they will look at as points of comparison. By balancing depth and breadth, students will have the opportunity to gain enduring understandings that social studies teaches us about ourselves and our world. To help develop these enduring understandings, these unit outlines include recommended placement of several of the state’s Classroom-Based Assessment models (CBAs). To see the full requirements of the CBAs referenced below, visit OSPI’s social studies assessment web page.

Unit Outline for Kindergarten: Learning About Myself and My Classroom Community

Essential Question(s):

• How can we work together?

Guiding Question(s):

• What rules are there in our classroom community and why do we have them?
<table>
<thead>
<tr>
<th>Social Studies Standards</th>
<th>Suggested Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVICS</td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>Understands the purpose of rules in the classroom and school.</td>
</tr>
<tr>
<td></td>
<td>Examples: Explains that classroom rules are important so everyone can learn. Explains that playground rules are important so everyone is safe.</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Remembers the people who make and carry out rules in the classroom and school.</td>
</tr>
<tr>
<td></td>
<td>Examples: Identifies the teacher, principal, vice principal, counselor, and others who make and carry out rules at the school.</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Understands the key ideals of justice and fairness within the context of the classroom community.</td>
</tr>
<tr>
<td>PS 1</td>
<td>Examples: Explains that there are rules to follow in the classroom and on the playground. Explains that students can demonstrate fairness by sharing classroom supplies and playground equipment.</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Applies the ideals of justice and fairness when making choices or decisions in the classroom or on the playground.</td>
</tr>
<tr>
<td>PS 2</td>
<td>Examples: Uses the classroom rules when making choices about behavior in the classroom and on the playground. Uses the ideal of fairness when sharing classroom supplies and playground equipment.</td>
</tr>
<tr>
<td>SOCIAL STUDIES SKILLS</td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>Understands how to ask questions about the classroom and school community.</td>
</tr>
<tr>
<td>PS 7</td>
<td>Examples: Brainstorms questions about playground rules. Brainstorms questions about people who work at the school.</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Understands one’s point of view.</td>
</tr>
<tr>
<td></td>
<td>Examples: Explains one’s point of view about a playground rule.</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Evaluates the fairness of one’s point of view.</td>
</tr>
<tr>
<td></td>
<td>Examples: Determines one’s point of view about a playground rule based on how fair it is to oneself and others. Determines how to share playground equipment fairly.</td>
</tr>
<tr>
<td>5.3.1</td>
<td>States own viewpoints and listens to viewpoints of others.</td>
</tr>
<tr>
<td>PS 6</td>
<td>Examples: States own viewpoint on following classroom rules and listens to the viewpoints of classmates and teacher. States own viewpoint on fairness and listens to the viewpoints of classmates and the teacher.</td>
</tr>
<tr>
<td>HISTORY</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Understands and creates timelines to show personal events in a sequential manner.</td>
</tr>
<tr>
<td>PS 5</td>
<td>Examples: Creates and explains an individual timeline that shows personal events over time. Creates and explains a classroom timeline to show major events over a school day, school week, or school year.</td>
</tr>
<tr>
<td>SOCIAL STUDIES SKILLS</td>
<td></td>
</tr>
<tr>
<td>5.4.1</td>
<td>Retells and explains personal history.</td>
</tr>
<tr>
<td>PS 8</td>
<td>Examples: Retells a sequence of events that have happened over time. Explains physical changes over time.</td>
</tr>
<tr>
<td>PS 3</td>
<td>Understand that people have to make choices between wants and needs and evaluate the outcomes of those choices. (ECONOMICS)</td>
</tr>
<tr>
<td>PS 4</td>
<td>Understand human interaction with the environment. (GEOGRAPHY)</td>
</tr>
</tbody>
</table>
Shifts in Math Instruction

Differentiating mathematics content for kindergarten students on the basis of what knowledge and skills they bring to kindergarten is important. Mathematics content aligned with the mathematical skills that students bring to kindergarten enables student learning. Kindergarten mathematics instruction needs to improve, increase in daily time, and be more challenging.

CCSS major emphasis clusters for kindergarten mathematics is about:

- **Counting and Cardinality** – know number names and count sequence, count to tell the number of objects, and compare numbers;
- **Operations and Algebraic Thinking** – understand addition as putting together and adding to, and understanding subtraction as taking apart and taking from and,
- **Number and Operations in Base Ten** – work with numbers 11-19 to gain foundations for place value.

From the first years of life children have an ability to learn math and develop their interest in math. What they know when they enter kindergarten and first grade predicts their mathematics achievement for years to come – even throughout their school career. In high quality early childhood education programs, young children can engage in surprisingly deep investigations of mathematics ideas. They can learn skills, problem-solving, and concepts in ways that are natural and motivating to them.

Young children love to think mathematically. They become exhilarated by their own ideas and the ideas of others. To develop the whole child, we must develop the mathematical child. High-quality mathematics throughout early childhood does not involve pushing elementary arithmetic onto younger children. The CCSS progressions of learning are appropriately tied to developmental abilities. Kindergarten students are expected to have a deeper understanding of number sense, beginning addition and subtraction skill and beginning place value. Instead, good education allows children to experience mathematics as they play in and explore their world. A higher proportion of children are in early care and education programs every year. We teachers are responsible for bringing the knowledge and intellectual delight of mathematics to all children, especially those who have not yet had many high-quality educational experiences.” (Learning and Teaching Early Math – Doug Clements and Julie Sarama 2009).
Kindergarten Math – CCSS placemat (available electronically in letter size)

Mathematical Practices: The standards for mathematical practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students:

MP.1 Make sense of problems and persevere in solving them.
MP.2 Reason abstractly and quantitatively.
MP.3 Construct viable arguments and critique the reasoning of others.
MP.4 Model with mathematics.

K.O.A.1 Represent addition and subtraction with objects, fingers, mental images, drawings [drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)], sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

K.O.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

K.O.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

K.O.A.4 For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.

K.O.A.5 Fluently add and subtract within 5.

A. Know number names and the count sequence.
 @K.CC.1 Count to 100 by ones and by tens.
 @K.CC.2 Count forward beginning from a given number within the known sequence (instead of having to begin at 1).
 @K.CC.3 Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).

B. Count to tell the number of objects.
 @K.CC.4 Understand the relationship between numbers and quantities; connect counting to cardinality.
 a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.
 b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.
 c. Understand that each successive number name refers to a quantity that is one larger.
 @K.CC.5 Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.

C. Compare numbers.
 @K.CC.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies (include groups with up to ten objects).
 @K.CC.7 Compare two numbers between 1 and 10 presented as written numerals.

Number and Operations in Base Ten
K.NBT

E. Work with numbers 11–19 to gain foundations for place value.

K.NBT.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

Measurement and Data
K.MD

F. Describe and compare measurable attributes.

K.MD.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.

K.MD.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.

G. Classify objects and count the number of objects in each category.

K.MD.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. (Limit category counts to be less than or equal to 10.)

Geometry
K.G

H. Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).

K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.

K.G.2 Correctly name shapes regardless of their orientations or overall size.

K.G.3 Identify shapes as two-dimensional (lying in a plane, “flat”) or three-dimensional (“solid”).

I. Analyze, compare, create, and compose shapes.

K.G.4 Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/“corners”) and other attributes (e.g., having sides of equal length).

K.G.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.

K.G.6 Compose simple shapes to form larger shapes. For example, “Can you join these two triangles with full sides touching to make a rectangle?”
Shifts for Math:

<table>
<thead>
<tr>
<th>Shift</th>
<th>Focus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift 1</td>
<td>Focus</td>
<td>Teachers significantly narrow and deepen the scope of how time and energy is spent in the math classroom. They do so in order to focus deeply on only the concepts that are prioritized in the standards.</td>
</tr>
<tr>
<td>Shift 2</td>
<td>Coherence</td>
<td>Principals and teachers carefully connect the learning within and across grades so that students can build new understanding onto foundations built in previous years.</td>
</tr>
<tr>
<td>Shift 3</td>
<td>Fluency</td>
<td>Students are expected to have speed and accuracy with simple calculations; teachers’ structure class time and/or homework time for students to memorize, through repetition, core functions.</td>
</tr>
<tr>
<td>Shift 4</td>
<td>Deep Understanding</td>
<td>Students deeply understand and can operate easily within a math concept before moving on. They learn more than the trick to get the answer right. They learn the math.</td>
</tr>
<tr>
<td>Shift 5</td>
<td>Application</td>
<td>Students are expected to use math and choose the appropriate concept for application even when they are not prompted to do so.</td>
</tr>
<tr>
<td>Shift 6</td>
<td>Dual Intensity</td>
<td>Students are practicing and understanding. There is more than a balance between these two things in the classroom – both are occurring with intensity.</td>
</tr>
</tbody>
</table>
Counting and Cardinality (p) = priority

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.A.1</td>
<td>Count to 100 by ones and by tens.</td>
</tr>
<tr>
<td>(p) K.CC.1</td>
<td>I can count to 100 by ones and tens</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.A.2</td>
<td>Count forward beginning from a given number within the known sequence (instead of having to begin at 1).</td>
</tr>
<tr>
<td>(p) K.CC.2</td>
<td>I can count forward beginning from a given number within the know sequence instead of having to start at 1.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.A.3</td>
<td>Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).</td>
</tr>
<tr>
<td>(p) K.CC.3</td>
<td>I can write numbers 0 to 20 to label sets.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.B.4</td>
<td>Understand the relationship between numbers and quantities; connect counting to cardinality.</td>
</tr>
<tr>
<td>(p) K.CC.4</td>
<td>I know a number represents an amount of objects.</td>
</tr>
<tr>
<td>(p) K.CC.4a</td>
<td>When I count, I know that each number I say represents one object.</td>
</tr>
<tr>
<td>(p) K.CC.4b</td>
<td>I know that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.</td>
</tr>
<tr>
<td>(p) K.CC.4c</td>
<td>I know that when I count each successive number is one more.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.B.5</td>
<td>Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.</td>
</tr>
<tr>
<td>(p) K.CC.5</td>
<td>I can count to answer “How many?” questions about sets to 20 and I can count out objects to match a given number.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.C.6</td>
<td>Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.¹</td>
</tr>
<tr>
<td>(p) K.CC.6</td>
<td>I can tell you if a group has greater than, less than, or equal to the number of objects in another group.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.CC.C.7</td>
<td>Compare two numbers between 1 and 10 presented as written numerals.</td>
</tr>
<tr>
<td>(p) K.CC.7</td>
<td>I can compare two written numbers between 1 and 10.</td>
</tr>
</tbody>
</table>

(p) = priority

FWPS has identified standards titled “priority standards”. Priority standards are identified standards in Federal Way Public Schools that are stressed and assessed for reporting. All standards need to be taught throughout the school year with an emphasis on priority standards.
<table>
<thead>
<tr>
<th>Operations and Algebraic Thinking (p) = priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.MATH.CONTENT.K.OA.A.1 Represent addition and subtraction with objects, fingers, mental images, drawings, acting out situations, verbal explanations, expressions, or equations.</td>
</tr>
<tr>
<td>(p) K.OA.1 I can add and subtract with my fingers, objects, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, or equations.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.OA.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.</td>
</tr>
<tr>
<td>(p) K.OA.2 I can solve addition and subtraction word problems within 10 by drawing or using objects to solve.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.OA.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).</td>
</tr>
<tr>
<td>(p) K.OA.3 I can decompose numbers less than or equal to 10 into pairs in more than one way. (e.g., 1+4=5 and 5=2+3).</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.OA.A.4 For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.</td>
</tr>
<tr>
<td>K.OA.4 I can add any number from 1 to 9 to make 10.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.OA.A.5 Fluently add and subtract within 5.</td>
</tr>
<tr>
<td>(p) K.OA.5 I can fluently add and subtract within 5.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number and Operations in Base 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.MATH.CONTENT.K.NBT.A.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.</td>
</tr>
<tr>
<td>K.NBT.1 I can compose and decompose numbers from 11-19 into tens and ones and record them by using drawings or equations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement and Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.MATH.CONTENT.K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.</td>
</tr>
<tr>
<td>K.MD.1 I can describe objects by using measurable attributes (length, weight, height, etc.).</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.</td>
</tr>
<tr>
<td>K.MD.2 I can compare two objects with a measurable attribute and describe the differences.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.¹</td>
</tr>
<tr>
<td>K.MD.3 I can classify objects into given categories and count and sort the categories.</td>
</tr>
</tbody>
</table>

¹(p) = priority
<table>
<thead>
<tr>
<th>Geometry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS.MATH.CONTENT.K.G.A.1</td>
<td>Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.</td>
</tr>
<tr>
<td>K.G.1</td>
<td>I can describe the objects in the environment using the names of shapes and describe the position of objects using terms such as above, below, beside, in front of, & behind.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.G.A.2</td>
<td>Correctly name shapes regardless of their orientations or overall size.</td>
</tr>
<tr>
<td>K.G.2</td>
<td>I can correctly name shapes (squares, circle, triangles, rectangles, hexagons, cubes, cones, cylinders and spheres).</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.G.A.3</td>
<td>Identify shapes as two-dimensional (lying in a plane, “flat”) or three-dimensional (“solid”).</td>
</tr>
<tr>
<td>K.G.3</td>
<td>I can identify shapes as two-dimensional (lying in a plane, “flat” or three-dimensional (“solid”).</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.G.B.4</td>
<td>Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/“corners”) and other attributes (e.g., having sides of equal length).</td>
</tr>
<tr>
<td>K.G.4</td>
<td>I can analyze and compare two and three dimensional shapes.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.G.B.5</td>
<td>Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.</td>
</tr>
<tr>
<td>K.G.5</td>
<td>I can build and draw shapes.</td>
</tr>
<tr>
<td>CCSS.MATH.CONTENT.K.G.B.6</td>
<td>Compose simple shapes to form larger shapes. For example, “Can you join these two triangles with full sides touching to make a rectangle?”</td>
</tr>
<tr>
<td>K.G.6</td>
<td>I can combine simple shapes to form larger ones. (e.g., two squares make a rectangle).</td>
</tr>
</tbody>
</table>

(p) = priority
Overview of the Kindergarten Math Common Core Standards and Major Work

Major, Supporting, and Additional Clusters for Kindergarten

Emphases are given at the cluster level. Refer to the Common Core State Standards for Mathematics for the specific standards that fall within each cluster.

Key:
- ■ Major Clusters
- □ Supporting Clusters
- ○ Additional Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.CC.A</td>
<td>Know number names and the count sequence.</td>
</tr>
<tr>
<td>K.CC.B</td>
<td>Count to tell the number of objects.</td>
</tr>
<tr>
<td>K.CC.C</td>
<td>Compare numbers.</td>
</tr>
<tr>
<td>K.OA.A</td>
<td>Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.</td>
</tr>
<tr>
<td>K.NBT.A</td>
<td>Work with numbers 11-19 to gain foundations for place value.</td>
</tr>
<tr>
<td>K.MD.A</td>
<td>Describe and compare measurable attributes.</td>
</tr>
<tr>
<td>K.MD.B</td>
<td>Classify objects and count the number of objects in categories.</td>
</tr>
<tr>
<td>K.G.A</td>
<td>Identify and describe shapes.</td>
</tr>
<tr>
<td>K.G.B</td>
<td>Analyze, compare, create, and compose shapes.</td>
</tr>
</tbody>
</table>
Next Generation Science Standards “Shifts”

The Next Generation Science Standards (NGSS) provide an important opportunity to improve not only science education but also student achievement. Based on the Framework for K–12 Science Education, the NGSS are intended to reflect a new vision for American science education. The following conceptual shifts in the NGSS demonstrate what is new and different about the NGSS:

SHIFTS FOR SCIENCE:

<table>
<thead>
<tr>
<th>Shift</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift 1</td>
<td>Interconnected Nature of Science and the Real World</td>
<td>Given the importance of science and engineering in the 21st century, students require a sense of contextual understanding with regard to scientific knowledge, how it is acquired and applied, and how science is connected through a series of concepts that help further our understanding of the world around us. Student performance expectations have to include a student’s ability to apply a practice to content knowledge. Performance expectations thereby focus on understanding and application as opposed to memorization of facts devoid of context.</td>
</tr>
<tr>
<td>Shift 2</td>
<td>Focus and Coherence</td>
<td>The same ideas or details are not covered each year. Rather, a progression of knowledge occurs from grade band to grade band that gives students the opportunity to learn more complex material, leading to an overall understanding of science by the end of high school. Historically, science education was taught as a set of disjointed and isolated facts. The Framework and the NGSS provide a more coherent progression aimed at overall scientific literacy with instruction focused on a smaller set of ideas and an eye on what the student should have already learned and what they will learn at the next level.</td>
</tr>
<tr>
<td>Shift 3</td>
<td>Deeper Understanding</td>
<td>It is important that teachers and curriculum/assessment developers understand that the focus is on the core ideas—not necessarily the facts that are associated with them. The facts and details are important evidence, but not the sole focus of instruction.</td>
</tr>
<tr>
<td>Shift 4</td>
<td>Science and Engineering</td>
<td>Engineering and technology are integrated into the structure of science education. This integration is achieved by raising engineering design to the same level as scientific inquiry in classroom instruction when teaching science disciplines at all levels and by giving the core ideas of engineering and technology the same status as those in other major science disciplines.</td>
</tr>
<tr>
<td>Shift 5</td>
<td>College, Career, and Citizenship Readiness</td>
<td>There is no doubt that science and science education are central to the lives of all Americans. Never before has our world been so complex and science knowledge so critical to making sense of it all. When comprehending current events, choosing and using technology, or making informed decisions about one’s healthcare, understanding science is key. Science is also at the heart of the United States’ ability to continue to innovate, lead, and create the jobs of the future. All students, no matter what their future education and career path, must have a solid K–12 science education in order to be prepared for college, careers, and citizenship.</td>
</tr>
<tr>
<td>Shift 6</td>
<td>Alignment to the Common Core</td>
<td>The science standards and the Common Core Standards (math and ELA/Literacy) overlap in meaningful and substantive ways and offer an opportunity to give all students equitable access to learning standards.</td>
</tr>
</tbody>
</table>

Source: Next Generation Science Standards APPENDIX A – Conceptual Shifts in the Next Generation Science Standards
Conceptual Shifts in the Next Generation Science Standards

The Next Generation Science Standards (NGSS) provide an important opportunity to improve not only science education but also student achievement. Based on the Framework for K–12 Science Education, the NGSS are intended to reflect a new vision for American science education. The following conceptual shifts in the NGSS demonstrate what is new and different about the NGSS:

1. K–12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World.

“The framework is designed to help realize a vision for education in the sciences and engineering in which students, over multiple years of school, actively engage in scientific and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields.”\(^{(1)}\)

The vision represented in the Framework is new in that students must be engaged at the nexus of the three dimensions:

1. Science and Engineering Practices,
2. Crosscutting Concepts, and
3. Disciplinary Core Ideas.

Currently, most state and district standards express these dimensions as separate entities, leading to their separation in both instruction and assessment. Given the importance of science and engineering in the 21st century, students require a sense of contextual understanding with regard to scientific knowledge, how it is acquired and applied, and how science is connected through a series of concepts that help further our understanding of the world around us. Student performance expectations have to include a student’s ability to apply a practice to content knowledge. Performance expectations thereby focus on understanding and application as opposed to memorization of facts devoid of context. The Framework goes on to emphasize that:

“…learning about science and engineering involves integration of the knowledge of scientific explanations (i.e., content knowledge) and the practices needed to engage in scientific inquiry and engineering design. Thus the framework seeks to illustrate how knowledge and practice must be intertwined in designing learning experiences in K–12 science education.”\(^{(2)}\)

Current Washington Science Standards:

<table>
<thead>
<tr>
<th>Name</th>
<th>Content Standard</th>
<th>Performance Expectation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>SYSE</td>
<td>Similar parts may play different roles in different objects, plants, or animals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify ways that similar parts can play different roles in different systems (e.g., birds may use their beaks to crack seeds while other birds use their beaks to catch fish).</td>
</tr>
<tr>
<td>2-3</td>
<td>INQE Model</td>
<td>Models are useful for understanding systems that are too big, too small, or too dangerous to study directly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use a simple model to study a system. Explain how the model can be used to understand the system.</td>
</tr>
<tr>
<td>2-3</td>
<td>LS1A</td>
<td>Plants have life cycles that include sprouting, growing to full size, forming fruits and flowers, shedding seeds (which begins a new cycle), and eventually dying. The details of the life cycle are different for different plants.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the life cycle of a common type of plant (e.g., the growth of a fast-growing plant from seed to sprout, to adult, to fruits, flowers, and seeds).</td>
</tr>
<tr>
<td>2-3</td>
<td>LS1B</td>
<td>Animals have life cycles that include being born; developing into juveniles, adolescents, then adults; reproducing (which begins a new cycle); and eventually dying. The details of the life cycle are different for different animals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the life cycle of a common type of animal (e.g., the development of a butterfly or moth from egg to larva to pupa to adult, or the development of a frog from egg to tadpole to adult frog).</td>
</tr>
</tbody>
</table>
Next Generation Science Standards:

<table>
<thead>
<tr>
<th>3-LS1 From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
</table>

Students who demonstrate understanding can:

3-LS1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>LS1.B: Growth and Development of Organisms</td>
<td>Patterns</td>
</tr>
<tr>
<td>Modeling in 3-5 builds on K-2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. Develop models to describe phenomena.</td>
<td>• Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles.</td>
<td>• Patterns of change can be used to make predictions.</td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science findings are based on recognizing patterns.

Connections to other DCIs in third grade: N/A

Articulation of DCIs across grade-levels: MS.LS1.B

Common Core State Standards Connections:

ELA/Literacy –
- **RI.3.7** Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g. where, when, why, and how key events occur).
- **SL.3.5** Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details.

Mathematics –
- **MP.1** Model with mathematics.
- **3.NBT** Number and Operations in Base Ten.
- **3.NF** Number and Operations – Fractions.
2. The Next Generation Science Standards are student performance expectations – NOT curriculum.

Even though within each performance expectation Science and Engineering Practices (SEP) are partnered with a particular Disciplinary Core Idea (DCI) and Crosscutting Concept (CC) in the NGSS, these intersections do not predetermine how the three are linked in curriculum, units, or lessons. Performance expectations simply clarify the expectations of what students will know and be able to do by the end of the grade or grade band. Additional work will be needed to create coherent instructional programs that help students achieve these standards.

As stated previously, past science standards at both the state and district levels have treated the three dimensions of science as separate and distinct entities leading to preferential treatment in assessment or instruction. It is essential to understand that the emphasis placed on a particular Science and Engineering Practice or Crosscutting Concept in a performance expectation is not intended to limit instruction, but to make clear the intent of the assessments.

An example of this is illustrated in two performance expectations in high school physical sciences that use the practice of modeling. Models are basically used for three reasons: 1) to represent or describe; 2) to collect data; or 3) to predict. The first use is typical in schools since models and representations are usually synonymously. However, the use of models to collect data or to predict phenomena is new, for example:

Construct models to explain changes in nuclear energies during the processes of fission, fusion, and radioactive decay and the nuclear interactions that determine nuclear stability.

and

Use system models (computer or drawings) to construct molecular-level explanations to predict the behavior of systems where a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present.

In the first performance expectation, models are used with nuclear processes to explain changes. A scientific explanation requires evidence to support the explanation, so students will be called upon to construct a model for the purpose of gathering evidence to explain these changes. Additionally, they will be required to use models to both explain and predict the behavior of systems in equilibrium. Again, the models will have to be used to collect data, but they will be further validated in their ability to predict the state of a system. In both cases, students will need a deep understanding of the content, as well as proficiency in the ability to construct and use models for various applications. The practice of modeling will need to be taught throughout the year—and indeed throughout the entire K–12 experience—as opposed to during one two-week unit of instruction.

The goal of the NGSS is to be clear about which practice students are responsible for in terms of assessment, but these practices and crosscutting concepts should occur throughout each school year.
Current Way	NGSS Way (as I understand it so far)
• The standards describe the knowledge and skills students need to master.
• The standards need to be unpacked into the specific skills and content pieces to be taught in the classroom. | • The standards are the summative assessment of student mastery.
• The boxes under the standard represent the unpacked learning students need to demonstrate mastery of the standard.

Process

- Unpack the Standard
 - Develop a summative assessment to assess students' mastery of the standard
 - Develop a learning progression
- Group standards into a meaningful unit (usually 1-3 standards)
 - Organize the learning statements found in the boxes under the standards into a learning progression
 - Develop pre-assessments and formative assessments to assess student progress toward mastery of the standard
 - Develop or identify learning activities that will move students toward mastery of the standard

Implications:

- There are MANY different ways to group the standards to create units of instruction
 - How do we support teachers?
 - How much curriculum do we provide at a district level versus how much do we rely on teachers to create?
- Many of the standards will become common assessments
 - Should we develop performance tasks with rubrics for each standard?
 - How do we control cheating and plagiarism?
 - How do we provide teachers with opportunities to collaboratively score so that student grading is equitable across the district?
- Student understanding builds over time, so teachers can address part of a standard in one unit and part of it in another unit, or address the same concept with increasing complexity so long as students are prepared to demonstrate the performance expectation by the end of the course.
3. The Science Concepts in the NGSS Build Coherently from K–12.

The focus on a few Disciplinary Core Ideas is a key aspect of a coherent science education. The Framework identified a basic set of core ideas that are meant to be understood by the time a student completes high school:

“To develop a thorough understanding of scientific explanations of the world, students need sustained opportunities to work with and develop the underlying ideas and to appreciate those ideas' interconnections over a period of years rather than weeks or months [1]. This sense of development has been conceptualized in the idea of learning progressions [1, 25, 26]. If mastery of a core idea in a science discipline is the ultimate educational destination, then well-designed learning progressions provide a map of the routes that can be taken to reach that destination. Such progressions describe both how students' understanding of the idea matures over time and the instructional supports and experiences that are needed for them to make progress.”[3]

There are two key points that are important to understand:

• **First**, focus and coherence must be a priority. What this means to teachers and curriculum developers is that the same ideas or details are not covered each year. Rather, a progression of knowledge occurs from grade band to grade band that gives students the opportunity to learn more complex material, leading to an overall understanding of science by the end of high school. Historically, science education was taught as a set of disjointed and isolated facts. The Framework and the NGSS provide a more coherent progression aimed at overall scientific literacy with instruction focused on a smaller set of ideas and an eye on what the student should have already learned and what they will learn at the next level.

• **Second**, the progressions in the NGSS automatically assume that previous material has been learned by the student. Choosing to omit content at any grade level or band will impact the success of the student in understanding the core ideas and put additional responsibilities on teachers later in the process.

ESS2 Earth’s Systems; Strand D Weather and Climate

K-ESS2-1. **Use and share observations of local weather conditions to describe patterns over time.** [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations is limited to whole numbers and relative measures such as warmer/cooler.]

3-ESS2-1. **Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.** [Clarification Statement: Examples of data at this grade level could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]

3-ESS2-2. **Obtain and combine information to describe climates in different regions of the world.**

MS-ESS2-5. **Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.** [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted with probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

MS-ESS2-6. **Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.** [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

HS-ESS2-4. **Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.** [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruptions, ocean circulation; 10s-100s of years: changes in human activity, ocean circulation, solar output; 10s-100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10s-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

HS-ESS2-7. Construct an argument based on evidence about the simultaneous co-evolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; and how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]

4. **The NGSS Focus on Deeper Understanding of Content as well as Application of Content.**

The Framework identified a smaller set of Disciplinary Core Ideas that students should know by the time they graduate from high school, and the NGSS are written to focus on the same. It is important that teachers and curriculum/assessment developers understand that the focus is on the core ideas—not necessarily the facts that are associated with them. The facts and details are important evidence, but not the sole focus of instruction.

The Framework states:

“The core ideas also can provide an organizational structure for the acquisition of new knowledge. Understanding the core ideas and engaging in the scientific and engineering practices helps to prepare students for broader understanding, and deeper levels of scientific and engineering investigation, later on—in high school, college, and beyond. One rationale for organizing content around core ideas comes from studies comparing experts and novices in any field. Experts understand the core principles and theoretical constructs of their field, and they use them to make sense of new information or tackle novel problems. Novices, in contrast, tend to hold disconnected and even contradictory bits of knowledge as isolated facts and struggle to find a way to organize and integrate them [24]. The assumption, then, is that helping students learn the core ideas through engaging in scientific and engineering practices will enable them to become less like novices and more like experts.”

Current WA Standard:

6-8 PS2E Solids, liquids, and gases differ in the motion of individual particles. In solids, particles are packed in a nearly rigid structure; in liquids, particles move around one another; and in gases, particles move almost independently.

• Describe how solids, liquids, and gases behave when put into a container (e.g., a gas fills the entire volume of a container). Relate these properties to the relative movement of the particles in the three states of matter.

NGSS Standard:

MS-PS1-4 Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

Table: Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in 6-8 builds on K-5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.</td>
<td>• Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. • In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. • The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter.</td>
<td>Cause and Effect • Cause and effect relationships may be used to predict phenomena in natural or designed systems.</td>
</tr>
</tbody>
</table>

Current WA Standard:

9-11 LS1A Carbon-containing compounds are the building blocks of life. Photosynthesis is the process that plant cells use to combine the energy of sunlight with molecules of carbon dioxide and water to produce energy-rich compounds that contain carbon (food) and release oxygen.

• Explain how plant cells use photosynthesis to produce their own food. Use the following equation to illustrate how plants rearrange atoms during photosynthesis: $6\text{CO}_2+6\text{H}_2\text{O}+\text{light energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6+6\text{O}_2$

• Explain the importance of photosynthesis for both plants and animals, including humans.
NGSS Standard:

HS-LS1-5 Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in 9-12 builds on K-8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).</td>
<td>• The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen.</td>
<td>• Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.</td>
</tr>
</tbody>
</table>

5. Science and Engineering are Integrated in the NGSS, from K–12.

The idea of integrating technology and engineering into science standards is not new. Chapters on the nature of technology and the human-built world were included in Science for All Americans (AAAS 1989) and Benchmarks for Science Literacy (AAAS 1993, 2008). Standards for “Science and Technology” were included for all grade spans in the National Science Education Standards (NRC 1996).

Despite these early efforts, however, engineering and technology have not received the same level of attention in science curricula, assessments, or the education of new science teachers as the traditional science disciplines have. A significant difference in the Next Generation Science Standards (NGSS) is the integration of engineering and technology into the structure of science education. This integration is achieved by raising engineering design to the same level as scientific inquiry in classroom instruction when teaching science disciplines at all levels and by giving core ideas of engineering and technology the same status as those in other major science disciplines.

The rationale for this increased emphasis on engineering and technology rests on two positions taken in A Framework for K–12 Science Education (NRC 2011). One position is aspirational, the other practical.

From an inspirational standpoint, the Framework points out that science and engineering are needed to address major world challenges such as generating sufficient clean energy, preventing and treating diseases, maintaining supplies of food and clean water, and solving the problems of global environmental change that confront society today. These important challenges will motivate many students to continue or initiate their study of science and engineering.

From a practical standpoint, the Framework notes that engineering and technology provide opportunities for students to deepen their understanding of science by applying their developing scientific knowledge to the solution of practical problems. Both positions converge on the powerful idea that by integrating technology and engineering into the science curriculum, teachers can empower their students to use what they learn in their everyday lives.
Sample K-12 Standards Including Engineering:

K-PS3-2 Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area. [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]

1-PS4-4 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance. [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

2-ESS2-1 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land. [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water and different designs for using shrubs, grass, and trees to hold back land.]

3-ESS3-1 Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard. [Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind-resistant roofs, and lightning rods.]

4-ESS3-2 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. [Clarification Statement: Examples of solutions could include designing an earthquake-resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

MS-LS2-5 Evaluate competing design solutions for maintaining biodiversity and ecosystem services. [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

HS-PS1-6 Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation, including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]

HS-PS4-5 Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. [Clarification Statement: Examples could include solar cells capturing light and converting it to electricity, medical imaging, and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]
Progression of Engineering Design Standards:

<table>
<thead>
<tr>
<th>K-2</th>
<th>3-5</th>
<th>MS</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-2-ETS1-1</td>
<td>Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.</td>
<td>3-5-ETS1-1</td>
<td>Define a simple design problem reflecting a need or a want that includes specific criteria for success and constraints on materials, time, or cost.</td>
</tr>
<tr>
<td>K-2-ETS1-2</td>
<td>Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.</td>
<td>3-5-ETS1-2</td>
<td>Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.</td>
</tr>
<tr>
<td>K-2-ETS1-3</td>
<td>Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.</td>
<td>3-5-ETS1-3</td>
<td>Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS-ETS1-4</td>
<td>Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.</td>
</tr>
</tbody>
</table>

6. The NGSS are designed to prepare students for college, career, and citizenship.

There is no doubt that science and science education are central to the lives of all Americans. Never before has our world been so complex and science knowledge so critical to making sense of it all. When comprehending current events, choosing and using technology, or making informed decisions about one’s healthcare, understanding science is key. Science is also at the heart of the United States’ ability to continue to innovate, lead, and create the jobs of the future. All students no matter what their future education and career path must have a solid K–12 science education in order to be prepared for college, careers, and citizenship.

7. The NGSS and Common Core State Standards (English Language Arts and Mathematics) are Aligned.

The timing of the release of NGSS comes as most states are implementing the Common Core State Standards (CCSS) in English Language Arts and Mathematics. This is important to science for a variety of reasons. First, there is an opportunity for science to be part of a child’s comprehensive education. The NGSS are aligned with the CCSS to ensure a symbiotic pace of learning in all content areas. The three sets of standards overlap in meaningful and substantive ways and offer an opportunity to give all students equitable access to learning standards.

Some important work is already in progress regarding the implications and advantages to the CCSS and NGSS. Stanford University recently released 13 papers on a variety of issues related to language and literacy in the content areas of the CCSS and NGSS. (5)

Relationships and Convergences Found in the Common Core State Standards in Mathematics (practices), Common Core State Standards in ELA/Literacy*(student portraits), and A Framework for K-12 Science Education (science & engineering practices)

These student practices and portraits are grouped in a Venn diagram. The letter and number set preceding each phrase denotes the discipline and number designated by the content standards or framework. The Science Framework will be used to guide the production of the Next Generation Science Standards.

Sources:
Common Core State Standards for English Language Arts & Literacy* in History/Social Studies, Science, and Technical Subjects, p7.
Common Core State Standards for Mathematical Practice p6-8.
Assessment

In Kindergarten we use a variety of assessments that define a comprehensive data assessment system. A comprehensive system, supported by standards and guidelines, uses assessments to inform decisions across the entire P-3 system—from classroom instruction, learning, demonstrating growth over time, district planning, family outreach, and generate building professional development. A comprehensive approach will identify content needs through screening, progress monitoring, diagnostic assessment and outcome assessment. A comprehensive assessment system uses a variety of assessments to provide the right information at the right time. Assessments provide timely data to enable educators to modify instruction or target intervention to improve students’ learning in a relevant, timely and efficient manner that is tailored to the child. Assessment data also provides a way to communicate student progress and needs with parents, caregivers, and administrators.

For parents we have provided the Kindergarten Readiness Guidelines on page 10-5 and 10-6 which are aligned to WaKIDS. These guidelines are a quick snapshot of the learner’s ability to demonstrate behaviors observed by parents. This resource can be used by parents to identify a benchmark of skills needed to be prepared for kindergarten. In addition kindergarten teachers, in our state funded ADK schools are asked to assess all students entering kindergarten with the Washington Kindergarten Inventory of Developing Skills, or WaKIDS.

The Washington Kindergarten Inventory of Developing Skills, or WaKIDS, is now a fully-funded program that brings families, teachers and early learning providers together to support each child’s learning and transition into public schools. The program aims to have kindergarten teachers meet with families and early learning providers at the beginning of the school year to talk about each child’s strengths and needs. In the fall, kindergarten teachers will complete a more formal assessment of each child’s skills (social and emotional, physical, cognitive, and linguistic skills).

There is a need to have a clear understanding of the assessment system: what is measured in various assessments, how it is measured, and how to use assessment results in instructional decisions. A multi-level system of support (MTSS) formally known as RTI is supported by The National Center on Response to Intervention with information on screening and progress monitoring assessments that can be used to support planning and collaboration.
Multi-level System of Support (MTSS)
Formally known as RTI Graphic Road Map

All students receive high quality, differentiated culturally responsive core academic and behavioral instruction

Universal Screening

Student does not meet benchmarks

Student meets benchmarks

Student exceeds benchmarks

Instruction

High quality, differentiated core instruction
PLUS interventions based on student need

High quality, differentiated core instruction

High quality, differentiated, core instruction
PLUS additional challenges based on student need

Balanced Assessment System

Collaboration and results monitoring increases with the intensity of interventions

Collaboration at systems level
Results monitoring for continued progress

Collaboration and results monitoring increases with the intensity of challenge

Collaboration Results Monitoring

Universal screening, formative, benchmark, and summative assessments
PLUS Progress monitoring increases with the intensity of interventions

Universal screening, formative, benchmark, and summative assessments

Universal screening, formative, benchmark, and summative assessments
PLUS Progress monitoring increases with the intensity of challenge
FWPS Kindergarten Assessments

FWPS kindergarten district assessments should include both formal and informal measures and observations of student learning. Assessments can be used to better understand children’s overall development, to monitor children’s progress through the curriculum, or to identify children who are at risk of failure or need additional services. Care should be taken to keep all assessments developmentally appropriate.

- Assessments are administered directly to the child by the teacher. For example, a teacher listens to each of her students read a passage to determine their reading level, examining the students’ accuracy, types of errors made and comprehension.

- Observational measures are conducted during a specific activity. The teachers uses a rubric or checklist to determine whether a child demonstrates specific skills during an allotted timeframe. (WaKIDS)

- Authentic assessments are observations that are conducted during the regular flow of the day.

Kindergarten Screener (optional for teachers and parents)

- Entering kindergarten behaviors

WaKIDS/Teaching Strategies GOLD (state funded ADK schools)

- Observational Assessment administered by the end of October in the domains of physical, social/emotional, cognitive, language, literacy and math

Kindergarten Math Assessment (KMA)

- Counting and Cardinality
- Operations and Algebraic Thinking

Kindergarten Reading Assessment

- Early Literacy Behaviors (Concepts About Print- CAP)
- Letter Recognition
- Writing Picture Names (Fountas and Pinnell)
- High Frequency Words
- Fountas and Pinnell Reading Record (running record)

Federal Way District Report Card and Progress Report

- 1st quarter – baseline, 2nd quarter – report card towards end of K standards
- 3rd quarter – Progress report toward end of K standards
- Final quarter – summary of progress of year

Adapted from: Bornfreund, 2013 retrieved at: http://earlyed.newamerica.net/blogposts/2013/at_national_journal_assessment_lessons_from_early_childhood-83398
What is WaKIDS?

The Washington Kindergarten Inventory of Developing Skills (WaKIDS) is a process for:

- Welcoming students and their families to kindergarten.
- Assessing students’ strengths.
- Discussing the characteristics of children’s development and learning that will enable them to be successful in school.

Who participates?

In the 2013–14 school year, WaKIDS reached approximately 38,000 kindergartners. Most of these students are in state-funded, full-day kindergartens, which are now required to implement WaKIDS. This number will continue to grow as our state increases funding for full-day kindergarten.

How does it work?

WaKIDS has three parts:

1. **Family connection.** Before school starts, or shortly thereafter, kindergarten teachers meet with families and early learning professionals to welcome families and students to school, and talk about each child’s strengths and needs.

2. **Whole-child assessment.** By October 31, teachers observe and record each child’s developing skills in six areas: social-emotional, physical, cognitive, language, literacy, and mathematics.

3. **Early learning collaboration.** As the school year continues, early learning professionals and kindergarten teachers meet to share information.

How does it help?

Each year, 80,000 children enter kindergarten with a varying degree of skills. We want to know what works best in the transition from early learning into kindergarten. This is the perfect time to welcome families into the K–12 system and acknowledge their crucial role as partners in their child’s education.

As they are assessing their students, kindergarten teachers use the information they gather to improve classroom teaching and tailor their instruction to the individual needs of each child. WaKIDS also helps determine the best way to engage with families and inform decisions at the community, district, and state levels.

Will kindergarten entry requirements change?

No. All children who are 5 years old by August 31 may enter kindergarten. The purpose of WaKIDS is to provide families, early learning professionals, and kindergarten teachers a more formal process for sharing information, so children receive the support they need to be successful in school. It is not a tool to determine whether a child should enter kindergarten.

Who provides financial support?

WaKIDS is a partnership paid for with state, federal, and private funding. The Office of Superintendent of Public Instruction, Department of Early Learning and Thrive by Five Washington partner to implement WaKIDS. The Bill and Melinda Gates Foundation provides private financial support.

www.k12.wa.us/WaKIDS
Kindergarten Readiness Guidelines

Parents and families have a very important role as their child’s first teacher. Children learn in different ways and at different rates. They come to school with varying skills. These guidelines highlight some of the skills children need to be prepared for kindergarten. The list below suggests ways to work with your child to help him/her be more ready for school.

Social/Emotional

1. My child can follow 2-step directions consistently and is beginning to follow 3-step directions.
2. My child can remember and follow routines (ex: dinner, bath, brush teeth, read bedtime story, go to bed).
3. My child can tell about his/her own feelings (ex: I feel happy, I feel sad, I feel excited).
4. My child can calm him/herself when frustrated or upset.
5. My child can put on his/her own coat.
6. My child can use the bathroom independently.
7. My child can wash his/her hands.
8. My child can put away toys, clean up small spills and pick up after him/herself.
9. My child shares, takes turns and helps others.
10. My child adjusts to new situations and/or people.
11. My child plays cooperatively with others.
12. My child can comfort others.
13. My child has the opportunity to play regularly with the same friends his/her age.

Physical

1. My child can run, jump and gallop.
2. My child can stand on one foot.
3. My child can throw and catch a large ball.
4. My child can kick a ball.
5. My child can cut using scissors.
6. My child can hold and use a pencil.
7. My child can buckle, zip, snap, and button.

Language

1. My child can use words to express his/her thoughts and needs.
2. My child can name and describe familiar things in his/her world.
3. My child uses new words everyday.
4. My child speaks clearly and is understood by most people.
5. My child can speak in 4-6 word sentences.
6. My child can talk about things that happened in the past, with details.
7. My child can have a conversation on one topic with another person, taking turns talking.
Cognitive

1. My child can think of more than one way to solve a problem.
2. My child shows curiosity and seeks answers to questions.
3. My child shows flexibility and creativity in play and problem solving.
4. My child can group things by color, shape, or size, etc.
5. My child can sit still, stay focused and stick with an activity.

Literacy

1. My child knows 5-10 rhymes or children’s songs.
2. My child knows if words start with the same sound (for example: big, brown, bear).
3. My child can hear parts of words (ex: hap-py, 2 parts or 2 syllables).
5. My child says the correct sounds for 10-20 letters.
6. My child is familiar with the parts of a book: cover, title, pages, words, etc.
7. My child reads with an adult or listens to a story daily; he/she can talk about and retell a story.
8. My child “writes” a story by drawing pictures and/or using letters.
9. My child can write his/her name and identify the letters.
10. My child can say the alphabet.

Math

1. My child can count 10-20 objects, pointing to each object.
2. My child can count out loud, in order, up to 20.
3. My child is beginning to understand and use the words more, less and the same.
4. My child can identify numbers 1-10.
5. My child connects numbers 1-10 with the matching set of objects.
7. My child matches and sorts simple shapes.
9. My child uses words to describe things by size, shape, and weight (ex: big, circle, heavy).
10. My child can put things in order (ex: 1st, 2nd, 3rd).

Personal Information

1. My child knows his/her first name, last name and parents’ names.
2. My child knows his/her address and phone number.
3. My child can name 10 body parts (head, shoulders, knees, fingers, etc.).
4. My child knows his/her age and birthday.

Developed by the PreK-3 Cross District Coalition of Edmonds, Everett, Federal Way, Highline and Seattle Public Schools. Aligned with Teaching Strategies GOLD, WhatISee (Washington Kindergarten Inventory of Developing Skills) Progessions of Development & Learning and adapted from Characteristics of Children Entering Kindergarten. Changes will not be made to this document without the written consent of the PreK-3 Cross District Coalition. Funded by the Bill & Melinda Gates Foundation. January 2014.
Guiding Principles

The following principles are philosophical statements that underpin the standards and resources of this literacy blueprint. They should guide the construction and evaluation of English language arts and literacy programs in FWPS Elementary Schools.

<table>
<thead>
<tr>
<th>GUIDING PRINCIPLES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiding Principle 1</td>
<td>The ELA Common Core State Standards (CCSS) articulate what to teach so that educators can focus on how to instruct and the pathway that can best meet the needs of each student. Attending to these rigorous academic standards, provides the content for high quality curriculum and instruction and for a balanced assessment system aligned to those standards. When woven into a cohesive curriculum, reading, writing, listening, speaking, language, and foundation standards provide the optimal learning experience for students. The transition from previous state standards to the Common Core requires educators to increase (1) building knowledge through content rich non-fiction and informational texts, (2) reading and writing grounded in evidence from the text, and (3) regular practice with complex texts and embedded academic vocabulary. When implemented within a multi-level system of support, the Common Core standards and these instructional shifts help to ensure that every child will graduate prepared for college, career, and a productive life.</td>
</tr>
<tr>
<td>Guiding Principle 2</td>
<td>Students bring strengths and experiences to learning. ELA curriculum, instruction, and assessment that are grounded in the culturally responsive practices of relevance, identity, belonging, and community serve to best engage all students. High-quality ELA curriculum and instruction should be culturally relevant to the students being served and prepare all students for a multicultural world. Although no two students come to school with the same culture, learning strengths, background knowledge, or experiences, and no two students learn in exactly the same way, every student's unique personal history enriches classrooms, schools, and the community. This diversity is our greatest educational asset.</td>
</tr>
<tr>
<td>Guiding Principle 3</td>
<td>Recognizing that learners are different, teachers use flexible and fluid instructional designs as they support students to become increasingly independent readers and writers of complex text as well as strong communicators. Effective teachers realize that instruction needs to be modified for students capable of more advanced work, as well as for struggling students. Ongoing assessment and analysis drive these instructional decisions. All teachers believe, and their practices reflect, high expectations for all students through developmentally appropriate high quality instruction. As educators, we need to responsively diagnose and deliver what it takes to support each child in meeting their academic potential.</td>
</tr>
</tbody>
</table>

Key

Alignment to 5-D Framework:

- **Purpose**
- **Student Engagement**
- **Curriculum & Pedagogy**
- **Classroom Environment & Culture**
- **Student Engagement**
<table>
<thead>
<tr>
<th>Guiding Principle 4</th>
<th>Incorporate a variety of ongoing formative and summative assessments yielding valuable actionable information to support student growth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>Assessment of Student learning</td>
</tr>
<tr>
<td>Guiding Principle 5</td>
<td>Provide a balance between foundational skills and meaningful reading, writing, speaking and listening experiences.</td>
</tr>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>Purpose, Student Engagement, Curriculum & Pedagogy</td>
</tr>
<tr>
<td>Guiding Principle 6</td>
<td>Place oral language and interaction as a core component.</td>
</tr>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>Student Engagement, Curriculum & Pedagogy, Classroom Environment & Culture</td>
</tr>
<tr>
<td>Guiding Principle 7</td>
<td>Build critical thinking as an extension to language development.</td>
</tr>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>Student Engagement, Curriculum & Pedagogy, Classroom Environment & Culture</td>
</tr>
</tbody>
</table>

Meaningful assessment drives instruction, affects learning, and is an integral part of teaching. Purposeful assessment practices help teachers and students understand where they have been, where they are now, and where they might go next. A single assessment cannot provide sufficient information to plan teaching and learning. Using different types of assessments as part of instruction, results in useful information about student understanding and progress. FWPS educators use this information to guide their own practice and in partnership with students and their families, to reflect on learning and set future goals.

From the beginning, it is essential for success in reading to converse with, co-write with, and provide opportunities for children to engage with print in engaging and meaningful ways. This plays an especially critical role in developing children’s vocabulary, their familiarity with how texts work, their knowledge of the natural world, and their appreciation for the power of the written word. In the primary grades, foundational skills are emphasized while at the same time addressing the meaningful elements of rich informational and narrative texts. Explicit skill instruction in reading and writing is necessary to create the building blocks for later acceleration. Intermediate students continue to learn about and practice foundational skills in increasingly more complex texts, continuing the balanced literacy format. Daily application and practice of these skills in meaningful, authentic literacy experiences—with timely, relevant, and specific feedback—is critical to solidify the learning.

The Common Core provides a powerful opportunity to build diversity into instruction and encourage powerful dialogue. The words we read, write and speak carry perspective, context, and origin. No text is neutral. There is always voice. When planning literacy instruction, teachers place students into a dialogue with the authors and texts as well as with their peers. The more text-to-self and text-to-world connections a student can make the more equitable and powerful the dialogue will be. (Adapted from Chiariello, 2012)

*Oral language development includes critical skills that let children:
- Communicate—listen and respond when other people are talking
- Understand the meaning of a large number of words and concepts that they hear or read
- Obtain new information about things they want to learn about
- Express their own ideas and thoughts using specific language

Oral language development is a critical foundation for reading, writing, and spelling, and it is the “engine” of learning and thinking.” (Learning to Talk and Listen, 2009).

Effective use of language both requires and extends thinking. As learners listen to a provocative narrative, view a video clip of a famous speech, analyze a poem, or write an essay, they engage in thinking. Students develop their ability to remember, understand, analyze, evaluate, and apply the ideas they encounter in English language arts and in all the other disciplines, when they read increasingly complex texts and undertake increasingly challenging assignments that require them to write or speak in response to what they are learning. Grounding their thoughts, using evidence from sources is an integral aspect of the work. Teachers recognize the importance of being able to respond effectively to the challenges of linguistic and cultural differences in their classrooms. They draw on these different ways of talking and thinking as potential bridges to speaking and writing in Standard English. Interactions with peers allow prime opportunities to foster respectful dialog when presenting opposing arguments.
<table>
<thead>
<tr>
<th>Guiding Principle 8</th>
<th>Students should encounter many examples of informational and media texts (including non-print texts such as dance, visual arts, video, music, theatre, etc.) aligned to the grade level complexity. This kind of reading, listening, and viewing is the key to building an abundant academic vocabulary bank and increasing knowledge about the world. Each kind of print or media text has unique characteristics; proficient students apply the critical techniques learned in the study of exposition to the evaluation of multimedia, television, radio, film/video, and websites. Research-based vocabulary acquisition strategies are evident in all classrooms, to support the learning. An approach that integrates the components of ELA (reading, writing, listening, speaking and language) with the required content from social studies and science is optimal. GLAD and Integrated Social Studies and Science units developed by the district can support this integration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>Alignment to 5-D Framework:</td>
</tr>
<tr>
<td></td>
<td>Student Engagement</td>
</tr>
<tr>
<td></td>
<td>Curriculum & Pedagogy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guiding Principle 9</th>
<th>At all levels, students' writing records their imagination, exploration, and responses to the texts they read. As students attempt to write clearly and coherently about increasingly complex ideas, their writing serves to propel intellectual growth. A student's writing and speaking voice is an expression of self. Students' voices tell us who they are, how they think, and what unique perspectives they bring to their learning. Students' voices develop when teachers provide opportunities for interaction, exploration, and communication. When students discuss ideas and read one another's writing, they learn to distinguish between formal and informal communication. They also learn about their classmates as unique individuals who can contribute their distinctive ideas, aspirations, and talents to the class, the school, the community, and the nation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>In addition to writing across the curriculum, a writer's workshop format emphasizing writing arguments, explanatory/informative texts, and narratives is part of the balanced literacy model.</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
</tr>
<tr>
<td></td>
<td>Student Engagement</td>
</tr>
<tr>
<td></td>
<td>Curriculum & Pedagogy</td>
</tr>
<tr>
<td></td>
<td>Classroom Environment & Culture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guiding Principle 10</th>
<th>Families and communities play a crucial role in developing students' speaking, listening, language, reading, and writing skills. Effective literacy frameworks help parents and caregivers understand how vital their role is and emphasize that all of the components of literacy—close and critical reading, coherent writing, articulate speaking, and attentive listening—are essential in a democratic society.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment to 5-D Framework:</td>
<td>---</td>
</tr>
</tbody>
</table>

The preceding guiding principles are adapted from the English Language Arts Frameworks of The Wisconsin Department of Public Instruction and the Massachusetts Department of Elementary and Secondary Education, the article "Building Diversity into the Common Core," by Emily Chiariello (2012) and Learning to Talk and Listen, An oral language resource for early childhood caregivers, by the National Institute for Literacy (2009).
Literacy Continuums

The process of becoming an effective reader and writer is a symbiotic process and relationship of behaviors in a child’s development that is accessed through communities, schools, home, early education and care settings. Below is a continuum of literacy learning through a grade band progression (see table below). On page 11-5 through 11-7 are continuums demonstrating learning progressions by age band (Campbell Hill, 2001)

Concepts about Print – Demonstrate understanding of the organization and basic features of print.

Phonemic Awareness – Ability to hear and manipulate the individual sounds within words.

Phonics – Refers to instruction in how letters and sounds correspond to each other and how these sound-letter correspondences can be used to decode or pronounce words in text.

Decoding – The analysis of the letters in a word to determine its pronunciation; to translate from one form of message to another, such as from printed text to pronunciation.

Word, Passage Fluency – The ability to read text aloud with accuracy, speed and proper expression (prosody).

Vocabulary – refers to word meanings and vocabulary instruction is about teaching of word meanings

Comprehension – The act of understanding and interpreting the information within a text. The construction of meaning.

Writing – Constructing a sequence of meanings within an acceptable sequence of grammatical rules.

- Going from ideas
- to spoken words
- to printed messages.

Oral Language – It is through speaking (expressive) and listening (receptive) in the first instance that oral vocabulary is built; the ability to process and produce complex sentences in first practiced through speaking and our skills, in recounting, narrating and persuading are first done through talk. Oral language is primary and written language builds on it.

Conventions – Development of grammatical knowledge, grammar and usage choices in writing and speaking, grammar and usage for reading and listening comprehension.

Spelling – Process or activity of writing or naming the letters of the word

<table>
<thead>
<tr>
<th>Concepts of Print</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grades 3 and beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>Middle</td>
<td>End</td>
<td>Begin</td>
</tr>
<tr>
<td>Phonemic Awareness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonics/Decoding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word, Passage Fluency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spelling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral language</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Writing Continuum

<table>
<thead>
<tr>
<th>Preconventional</th>
<th>Emerging</th>
<th>Developing</th>
<th>Beginning</th>
<th>Expanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages 3-5</td>
<td>Ages 4-6</td>
<td>Ages 5-7</td>
<td>Ages 6-9</td>
<td>Ages 7-9</td>
</tr>
</tbody>
</table>

- **Preconventional**
 - Relies primarily on pictures to convey meaning.
 - Begins to talk and ideally say "words" to pictures.
 - Writes first name.
 - Demonstrates awareness that print conveys meaning.
 - Writes name and other names using drawing or objects with representation.
 - Uses random recognizable letters to represent words.
 - Tells about pictures and writing.

- **Emerging**
 - Uses pictures and simple stories to convey meaning.
 - Uses words to describe or support pictures.
 - Copies signs, letters, names, and words (environmental print).
 - Demonstrates understanding of letter-sound relationships.
 - Writes words with upper case letters.
 - Uses beginning consonants to make words.
 - Begins writing and writing constants to make sounds.
 - Begins to read own writing.
 - Uses self to rewrite.
 - Takes risks with writing.

- **Developing**
 - Writes 2-3 sentences about a topic.
 - Uses names and familiar words.
 - Generates own ideas for writing.
 - Writes from topics chosen by self and then shared with class.
 - Interprets upper and lower case letters.
 - Explores writing with capitals.
 - Explores writing with punctuation.
 - Begins to use spacing between words.
 - Uses growing awareness of sound segments (e.g., phonemes, syllables, rhymes) to write words.
 - Spells words on their own as context exists (without respect for conventional spelling patterns).
 - Begins to use beginning, middle, and ending sounds to make words.
 - Begins to read own writing.

- **Beginning**
 - Writes several sentences about a topic.
 - Uses about observations and responses.
 - Writes short stories or poems.
 - Uses short non-fiction pieces with facts about a topic.
 - Begins to read own writing.
 - Chooses own writing topics.
 - Reads own writing and notices mistakes with guidance.
 - Revists by sharing with others.
 - Uses spacing between words consistently.
 - Forms many letters correctly.
 - Writes short sentences that self and others can read.
 - Uses phonetic spelling to write non-words.
 - Spells single words and some high-frequency words correctly.
 - Begins to use personal and capital letters correctly.
 - Shares own writing with others.
 - Begins to read own writing.

- **Expanding**
 - Writes short fiction and poetry with guidance.
 - Uses a variety of short non-fiction pieces (e.g., facts about a topic, letters, list) with guidance.
 - Uses with a control idea.
 - Writes using complete sentences.
 - Organizes ideas in a logical sequence in fiction and non-fiction with guidance.
 - Begins to recognize and use interesting language.
 - Uses savant writing strategies (e.g., web, brainstorming) with guidance.
 - Listens to others' writing and others feedback.
 - Begins to consider suggestions from others about own writing.
 - Adds description and detail with guidance.
 - Identifies own writing strategies and sets goals with guidance.

<table>
<thead>
<tr>
<th>Bridging</th>
<th>Fluent</th>
<th>Proficient</th>
<th>Connecting</th>
<th>Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages 8-10</td>
<td>Ages 9-11</td>
<td>Ages 10-13</td>
<td>Ages 11-14</td>
<td>Ages 15-18</td>
</tr>
</tbody>
</table>

- **Bridging**
 - Write about feelings and opinions.
 - Writes fiction with clear beginning, middle, and end.
 - Writes poetry using carefully chosen language with guidance.
 - Writes organized non-fiction pieces (e.g., report, letter, list) with guidance.
 - Begins to use paragraphs and organize ideas.
 - Uses writing and editing language and draw pictures with guidance.

- **Fluent**
 - Begins to write organized fiction and non-fiction (e.g., reports, letters, lists) with guidance.
 - Develops awareness of parts that work together.
 - Begins to express ideas and solutions with guidance.
 - Creates connections in stories with guidance.
 - Writes poems using carefully chosen language.
 - Begins to experiment with sentence length and complex sentence structures.
 - Viens a variety of strategies for planning writing.
 - Adapts writing for purpose and audience with guidance.
 - Expects for specific writing tasks (e.g., ideas, organization, word choice, sentence fluency, voice, and conventions) with guidance.
 - Incorporates suggestions from others about own writing with guidance.
 - Expects self to write for audience with some guidance.
 - Uses punctuation, spelling, and grammar with some guidance.
 - Uses a range of strategies for planning writing.
 - Adapts writing for purpose and audience with guidance.
 - Expects for specific writing tasks (e.g., ideas, organization, word choice, sentence fluency, voice, and conventions) with guidance.
 - Incorporates suggestions from others about own writing with guidance.

- **Proficient**
 - Writes preconsciously about ideas, feelings, and opinions.
 - Creates connections in stories with guidance.
 - Begins to develop the main character and describe dialogue with guidance.
 - Begins to write organized and fluent non-fiction, including simple biographies.
 - Writes cohesive paragraphs including transitions and examples with guidance.
 - Uses transitional sentences to connect paragraphs.
 - Works with sentence structure, leads, and endings.
 - Begins to use descriptive language, details, and images.
 - Uses voice to enhance emotional resonance from media.
 - Begins to integrate information on a topic from a variety of sources.
 - Begins to write for a specific writing task (e.g., ideas, organization, word choice, sentence fluency, voice, and conventions) with guidance.
 - Expects some directions on specific types of writing.
 - Integrates information on a topic from a variety of sources.
 - Constructs charts, graphs, and tables to convey information when appropriate.
 - Uses pre-writing strategies effectively to organize and strengthen writing.
 - Begins to use complex punctuation (e.g., commas, semicolons, quotation marks) appropriately.

- **Connecting**
 - Writes a variety of genres and texts for different audiences and purposes independently.
 - Creates plans with a context.
 - Creates detailed, developable settings and characters in stories.
 - Works with sentence structure, lead, and ending.
 - Integrates information on a topic from a variety of sources.
 - Constructs charts, graphs, and tables to convey information.
 - Uses pre-writing strategies effectively to organize and strengthen writing.
 - Begins to use complex punctuation (e.g., commas, semicolons, quotation marks) appropriately.
 - Integrates information on a topic from a variety of sources.
 - Constructs charts, graphs, and tables to convey information when appropriate.
 - Uses pre-writing strategies effectively to organize and strengthen writing.
 - Begins to use complex punctuation (e.g., commas, semicolons, quotation marks) appropriately.
 - Integrates information on a topic from a variety of sources.

- **Independent**
 - Writes organized, fluent, and creative non-fiction, including narratives, poetry, and other types of writing.
 - Uses descriptive language, details, and images to enhance ideas.
 - Begins to use descriptive language, details, and images.
 - Uses voice to enhance emotional resonance from media.
 - Begins to integrate information on a topic from a variety of sources.
 - Constructs charts, graphs, and tables to convey information when appropriate.
 - Uses pre-writing strategies effectively to organize and strengthen writing.
 - Begins to use complex punctuation (e.g., commas, semicolons, quotation marks) appropriately.
 - Integrates information on a topic from a variety of sources.
 - Constructs charts, graphs, and tables to convey information.
 - Uses pre-writing strategies effectively to organize and strengthen writing.
 - Begins to use complex punctuation (e.g., commas, semicolons, quotation marks) appropriately.
English as an Additional Language (EAL) Listening & Speaking Continuum

New to English
- Listens attentively to an English speaker with guidance.
- Follows one-step directions.
- Uses context cues to respond appropriately to classroom routines.
- Responds to greetings with nods and gestures.
- Expresses needs in English with single words and gestures.
- Responds during classroom discussions with nods and gestures.
- Participates non-verbally in the classroom.
- Names simple objects with guidance.
- Repeats English words and phrases with guidance.
- Echoes single words and/or short phrases.
- Produces single words and/or stock phrases with guidance.
- Demonstrates enthusiasm about learning English.
- Begins to follow illustrated stories and classroom instruction.
- Follows two-step directions.
- Responds to greetings with single words and/or phrases.
- Begins to respond to simple questions with one-word answers.
- Begins to express needs and give basic information (e.g., “I’m fine” and “this car”).
- Participates orally in classroom discussions with guidance.
- Uses some basic classroom vocabulary.
- Understands everyday classroom and subject area language with guidance.
- Begins to repeat new English words and phrases clearly.
- Begins to communicate using short phrases and simple language patterns, producing telegraphic sentences (e.g., “I want to go shop buy toy.”).
- Practices English and tries new words and phrases.

Early Acquisition
- Begins to contribute to group discussions and offer opinions and/or feedback during discussions.
- Paraphrases oral information with guidance.
- Uses English in social situations.
- Begins to respond to more complex questions.
- Expresses needs and gives information independently.
- Begins to ask questions to clarify content and meaning.
- Begins to use more complex language functions (e.g., hypothesizing and reasoning) within an academic context.
- Begins to use an extensive vocabulary, using some abstract and specialized subject area words.
- Understands classroom and subject area language with repetition, rephrasing, or clarification.
- Speaks English clearly.
- Produces longer, more complex utterances using phrases, clauses, and sequence words (e.g., “next” and “then”).
- Begins to use correct form when asking questions.
- Begins to use correct verb tense to express present, past, and future.
- Shows interest in improving language skills and accuracy.
- Listens attentively to an English speaker.
- Listens to others and offers opinions and/or feedback.
- Begins to paraphrase oral information.
- Uses language appropriately across the curriculum for different purposes and audiences.
- Responds to complex questions independently.
- Asks questions to clarify content and meaning.
- Develops awareness that there are appropriate forms and styles of language for different purposes and audiences.
- Begins to speak with confidence in front of a group.
- Uses more extensive vocabulary, using abstract and specialized subject area words independently.
- Understands classroom and subject area language at nearly normal speed.
- Speaks English with near-native fluency; any hesitation does not interfere with communication.
- Begins to vary speech appropriately using intonation/stress.
- Uses correct form when asking questions.
- Speaks confidently and uses new vocabulary flexibly.

Becoming Familiar
- Begins to listen attentively to an English speaker.
- Follows multi-step directions.
- Begins to use English in social situations.
- Responds to greetings with phrases.
- Responds to simple questions with more than one-word answers.
- Uses different language functions in discussions (e.g., predicting and describing) with guidance.
- Participates in classroom discussions and offers opinions and feedback with guidance.
- Begins to understand classroom and subject area language.
- Begins to use expanding vocabulary that is less context-bound.
- Begins to speak English clearly.
- Communicates using short phrases and simple language patterns.
- Begins to use connected discourse (e.g., “Yesterday I go pool and I swam.”).

Becoming Competent
- Listens attentively to an English speaker.
- Listens to others and offers opinions and/or feedback.
- Begins to paraphrase oral information.
- Uses language appropriately across the curriculum for different purposes and audiences.
- Responds to complex questions independently.
- Asks questions to clarify content and meaning.
- Develops awareness that there are appropriate forms and styles of language for different purposes and audiences.
- Begins to speak with confidence in front of a group.
- Uses more extensive vocabulary, using abstract and specialized subject area words independently.
- Understands classroom and subject area language at nearly normal speed.
- Speaks English with near-native fluency; any hesitation does not interfere with communication.
- Begins to vary speech appropriately using intonation/stress.
- Uses correct form when asking questions.
- Speaks confidently and uses new vocabulary flexibly.

Becoming Fluent
- Listens attentively to an English speaker.
- Listens to others and offers opinions and/or feedback.
- Begins to paraphrase oral information.
- Uses language appropriately across the curriculum for different purposes and audiences.
- Responds to complex questions independently.
- Asks questions to clarify content and meaning.
- Develops awareness that there are appropriate forms and styles of language for different purposes and audiences.
- Begins to speak with confidence in front of a group.
- Uses more extensive vocabulary, using abstract and specialized subject area words independently.
- Understands classroom and subject area language at nearly normal speed.
- Speaks English with near-native fluency; any hesitation does not interfere with communication.
- Begins to vary speech appropriately using intonation/stress.
- Uses correct form when asking questions.
- Speaks confidently and uses new vocabulary flexibly.

Fluent
- Listens attentively to an English speaker.
- Listens to others and offers opinions and/or feedback.
- Begins to paraphrase oral information.
- Uses language appropriately across the curriculum for different purposes and audiences.
- Responds to complex questions independently.
- Asks questions to clarify content and meaning.
- Develops awareness that there are appropriate forms and styles of language for different purposes and audiences.
- Begins to speak with confidence in front of a group.
- Uses more extensive vocabulary, using abstract and specialized subject area words independently.
- Understands classroom and subject area language at nearly normal speed.
- Speaks English with near-native fluency; any hesitation does not interfere with communication.
- Begins to vary speech appropriately using intonation/stress.
- Uses correct form when asking questions.
- Speaks confidently and uses new vocabulary flexibly.
A Continuum of Literacy Learning
A Network of Processing Systems for Literacy*

*Adapted from Fountas, Irene C., and Gay Su Pinnell. 2011. The Continuum of Literacy Learning Grades Prek-2. Portsmouth, NH: Heinemann. This text provides a continuum of literacy and language learning across six areas: Interactive read aloud, shared and performance reading and writing, writing about reading, writing, oral, visual and technological communication; and phonics, spelling and word study ages 3 through grade 2.
Whole Group Reading in Kindergarten

<table>
<thead>
<tr>
<th>WHOLE GROUP READING MENU</th>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Aloud</td>
<td>Aligned to priority standards, developing critical reading behaviors or skills/strategies that the majority of the class needs support with. The standard or objective for the lesson is clearly stated or posted.</td>
<td>• "I can" statements with visual supports for understanding - posted clearly and referred to throughout the lesson</td>
</tr>
<tr>
<td>Shared Reading</td>
<td>CEL 5D+</td>
<td>• Use district or school curriculum map to determine the standard or skills/strategies to develop the lesson</td>
</tr>
<tr>
<td>Share circle/debrief</td>
<td>Curriculum & Pedagogy (Curriculum)</td>
<td>• Use diagnostic assessment data to determine the skills/strategies students need to meet the targeted CCSS</td>
</tr>
<tr>
<td>Close Reading Experience</td>
<td>Purpose (Standards & Learning Target and Teaching Points)</td>
<td>• The purpose of the lesson is directly aligned to the CCSS or skills and strategies that students need.</td>
</tr>
<tr>
<td>(Whole Group Guided Reading)</td>
<td>Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies, Scaffolds for Learning)</td>
<td>• Teacher communicates the learning target throughout the lesson and checks for student understanding.</td>
</tr>
<tr>
<td>Interactive Read Aloud</td>
<td>Full-lesson 15-45 minutes</td>
<td>• Lessons may be shorter in the fall and grow in lesson length as Kindergarten stamina grows.</td>
</tr>
<tr>
<td>Letter/Sound/Word Work</td>
<td>Mini-lesson 5-15 minutes</td>
<td>• Full-lesson 15-45 minutes</td>
</tr>
<tr>
<td></td>
<td>May include Social Studies and Science content</td>
<td>• Mini-lessons can be between 5-15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select a focus to develop a mini-lesson, consider using different strategies to focus on in each mini-lesson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make in-the-moment instructional adjustments to meet students’ needs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEL 5D+</td>
</tr>
<tr>
<td></td>
<td>Curriculum & Pedagogy (Teaching Approaches and/or Strategies, Scaffolds for Learning)</td>
<td>Skills and strategies are taught/reviewed connected to a text whenever possible ensuring the transfer of skills to application in text</td>
</tr>
<tr>
<td></td>
<td>Assessment for Student Learning (Adjustments)</td>
<td>• Skills should be practiced in authentic learning experiences (e.g. We practice rhyming, because we are reading ____ book with rhymes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Design all lessons around quality text.</td>
</tr>
</tbody>
</table>
Whole Group Reading in Kindergarten Continued

<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
</table>
| Texts are chosen that are high quality, high interest, and of appropriate grade level complexity (Qualitative and quantitative aspects as well as reader and task must be considered.) They may be aligned to Social Studies or Science content and/or the GLAD theme. | • Texts:
- Big books, Read Alouds, Poems
- Book on the document camera
- Individual copies for each student
- Books on flipcharts
- Multimedia:
 - Video
 - Music
 - Magazine
 - Art
 - Website
 - There should be 50% narrative and 50% informational text presented in the classroom |
| **CEL 5D+**
- Curriculum & Pedagogy (Curriculum)
- Student Engagement (Engagement Strategies, Intellectual Work) | **CEL 5D+**
- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning) |
| There is a balance of 50% narrative and 50% informational text used. Text range from very short (used for example in close reading) to longer pieces aligned to the instructional objective. | • Looking at instruction over the course of the year, the balance between narrative and informational will be 50%-50%
• The ELA modules designed by FWPS are balanced 50%-50%. ELA Module 1 & 2 are focused more on narrative, while ELA Module 3 & 4 are focused more on informational pieces. |
| Vocabulary is developed using a variety of meaningful strategies (For example using Cognitive Content Dictionary(GLAD), Marzano’s 6 step process for teaching new terms, or choosing other appropriate methods for teaching vocab, such as demonstration, dramatization, illustration, Frayer method, etc.) | • Based off of strategies presented in “Bringing Words to Life: Robust Vocabulary Instruction” by Beck, McKeown & Kucan
• Expose kindergartners to academic vocabulary
• Picture Dictionary, Total Physical Response and/or Cognitive Content Dictionary (GLAD Strategies)
• Vocabulary should be drawn out of text, don’t teach it in isolation.
• Provide multiple opportunities with saying and using the vocabulary word |
| The teacher uses strategies to ensure all students are engaged in the experience as evidenced by student participation. | • All students must have access to the text in some way, providing scaffolds for struggling readers to gain access to experience the text complexity
• Provide discussion questions to promote student engagement
• Provide opportunities for inquiry-based learning
• Provide opportunities for students to engage and experience the productive struggle |
| Listening and speaking standards are addressed in every lesson as students turn and talk participate in discussions, and interact with the text in meaningful ways. | • There should be at least 65% student talk occurring in the classroom.
• Think/pair/share
• Numbered spoons (GLAD strategy)
• Planned questioning at differing DOK levels
• Provide students with sentence frames to support oral development. |
Whole Group Reading in Kindergarten Continued

Blueprint Key Attributes

<table>
<thead>
<tr>
<th>Writing is a natural extension - Acceleration in reading happens when reading and writing experiences are paired</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)</td>
</tr>
</tbody>
</table>

Kindergarten Specifications

<table>
<thead>
<tr>
<th>• In the fall, response to reading may be in the form of pictures, while other students may be reading for more developed writing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In the spring, student responses to reading will be more developed and ready for more complete writing responses.</td>
</tr>
<tr>
<td>• Provide students with sentence frames to support writing development.</td>
</tr>
<tr>
<td>• Promote use of vocabulary from the text. This writing also allows you to use high frequency words and writing strategies.</td>
</tr>
</tbody>
</table>

Differentiation occurs through strategic questioning (for example tiered to match ELL language levels) ELT review & ELD group frame (GLAD), partnering (for example pairing native Spanish speakers together), and follow-up tasks (for example expecting the same skill objective with different leveled texts)

| • Develop whole group reading lessons that are targeted to the majority of your students' needs. Once the whole group lesson is developed, begin working on the scaffolds to support the growth of the ELLs and struggling readers to ensure that the content is accessible to all students. |

Materials to assist with this learning component

| **CEL 5D+ Classroom Environment & Culture (Use of physical Environment)** |

- Mentor texts
- 50% narrative, 50% informational
- Teaching easels: one for big books, one for writing
- Big books, enlarged text on screen, and/or class sets
- Consumable close reading passages
- Chart paper (both lined and unlined)
- Audio books
- Alphabet, alphabet chart
- Word wall
- Word work: magnetic letters, wiki sticks, tactile letters
- Chart paper, Sticky notes
- Pointers
- Individual whiteboards with markers and erasers
- Graphic organizers for reading responses

Configuration of learning environment (Look like)

| **CEL 5D+ Classroom Environment & Culture** |

- Wall space to display charts
- Rug to define the space
- Consider having your big book easel in one corner and a writing easel on one corner
- Small shelves for teacher storage
- Teacher chair
- Students up close (proximity breeds engagement!)

Student Engagement activities/strategies

| **CEL 5D+ Student Engagement (Engagement Strategies and Talk)** |

- Students up close
- Students have frequent opportunities to engage in conversation, both with the teacher and with each other (5 minutes of instruction to 1 minute process time/turn and talk)
- GLAD strategies
- Plenty of student choice and voice Select age appropriate and engaging books/texts
- Use what you know about your students' interests to select texts
- Hands on experiences when possible

Time considerations and frequency

| **CEL 5D+ Classroom Environment & Culture (Routines & Rituals)** |

- Occurs daily -15-45 minute lessons, depending on the age of students, engagement opportunities, and time of the year
- You may use multiple mini-lessons as a part of one literacy block
- Find a time when the fewest number of students are being pulled out (Resource, LAP, ELL, etc.)
Small Group Reading in Kindergarten

Small Group Menu

<table>
<thead>
<tr>
<th>Guided Reading Groups</th>
<th>Topic or Genre Study Group</th>
<th>Word Work Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Strategy Group</td>
<td>Schools trained in GLAD may use GLAD strategies: Clunkers and Links, ELD Group Frame, Expert Groups, Co-op Strip Reading Group, Ear to Ear Reading, Focused Reading with CCD</td>
<td>Peer Partnership</td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

Kindergarten Specifications

- Early Literacy Behaviors
- Beginning High frequency words
- Phonemic Awareness
- Fountas & Pinell reading Level
- Phonic Skills
- Early literacy skills such as letter recognition/sounds

- Purpose is clearly stated or addressed in plan: “I can” statements with picture support so students know what skills/strategies they are working on

- Students move through groups as their needs change
- Groups should be happening early on…..as soon as you know their needs and have set some routines so students can work independently

- Level books from bookroom or personal libraries, Poems, Time for Kids articles, etc. can be used for small groups. Usually students will have their own book or materials such as magnetic letters
- Matching books to reader’s interests, background knowledge, or content is recommended as much as possible
- Texts should be short and in a variety of genres.
- Compliment the text with pictures, video clips and realia to support comprehension and engagement

- The students with the highest needs should be receiving the most support however all students should be challenged through small group support.
- Consider your schedule over a 1-2 week span to accommodate all students’ needs.

- Examples of formative assessments:
 - Informal running records
 - Anecdotal notes
 - Observation of reading behaviors
 - Video using iPad
 - Student self-assessments using rubrics/hand signals

CEL 5D+

- Curriculum & Pedagogy (Teaching Approaches and/or Strategies, Scaffolds for Learning)
- Assessment for Student Learning (Assessments, Adjustments)

CEL 5D+

- Purpose (Standards & Learning Target and Teaching Points)

CEL 5D+

- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)

CEL 5D+

- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies, Scaffolds for Learning)

- The lesson focus, skill, strategy or standard is explicitly stated or posted

- Groups are small (no more than 5) and flexible

- The chosen text is appropriate for the instructional level and/or has features to support the focus skills or strategies aligned to group needs and may be aligned to Social Studies/Science or GLAD content

- Students performing below the benchmark meet at least 3 (preferably consecutive) days per week (support on other 2 days happens through scaffolding and conferring)

- Formative assessment procedures are embedded
Small Group Reading in Kindergarten Continued

<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
</table>
| Listening and speaking standards are addressed in every lesson as students turn and talk, participate in discussions, and interact with the text in meaningful ways | • Small group lessons should include multiple oral language opportunities such as turn and talk, think-pair-share, sentence starters/stems.
• The majority of the time students should be doing the talking. This requires the teacher to intentionally plan the instruction around the book to include questions at various DOK levels. |
| CEL 5D+ |
Purpose (Standards & Learning Target and Teaching Points)
Student Engagement (Engagement Strategies and Talk) |
| Writing is a natural extension- Acceleration in reading happens when reading and writing experiences are paired | • Provide opportunities to respond to text through writing:
• Write using the sentence frame from the book and/or use vocabulary from the story to write their own sentence/story.
• Write about a personal experience that follows the book’s theme or problem.
• This writing also give you an opportunity to reinforce high frequency words and writing strategies….stretch out and write, etc. |
| CEL 5D+ |
Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning) |
| The small group venue is a perfect opportunity to address the needs of students who receive additional support from specific programs (ELL, Title/LAP, SPED). A partnership between specialists and general education teachers is crucial for student success. | • Although some students may receive support from specialists this should be in addition to small group instruction in the classroom (a double dip).
• Collaboration between the classroom teacher and specialists foster students success. |
| CEL 5D+ |
Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)
Professional Collaboration and Communication |

Materials to assist with this learning component

CEL 5D+ Classroom Environment & Culture (Use of physical Environment)

- Everyone has the text or access: Level texts, big book, poems, articles, short text
- Magnetic letters and metal trays
- Container with sharpened pencils and/or crayons
- Individual whiteboards with markers and erasers/socks
- Chart paper or easel
- Pointer
- Sentence strips for stems
- Blank journals for writing extensions
- Word wall
- Alphabet chart and name chart
- Sticky notes
- Teacher assessment notebook

Configuration of learning environment (Look like)

CEL 5D+ Classroom Environment & Culture

- U-shaped table, table, or floor space
- The small group area is placed where the teacher can oversee the rest of the class
- Materials are easily accessible often on a shelf nearby
- Easel or chart paper is positioned so all children can see and teacher can utilize
- Tubs with student materials, files by group
- Resource: Debbie Diller, Spaces and Places
Student Engagement activities/strategies

<table>
<thead>
<tr>
<th>CEL 5D+ Student Engagement (Engagement Strategies and Talk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Students up close</td>
</tr>
<tr>
<td>• Students have frequent opportunities to engage in conversation, both with the teacher and with each other (5 minutes of instruction to 1 minute process time/turn and talk)</td>
</tr>
<tr>
<td>• GLAD strategies</td>
</tr>
<tr>
<td>• Plenty of student choice and voice</td>
</tr>
<tr>
<td>• Select age appropriate and engaging books/texts</td>
</tr>
<tr>
<td>• Use what you know about your students’ interests to select texts</td>
</tr>
<tr>
<td>• Hands on experiences when possible</td>
</tr>
</tbody>
</table>

Time considerations and frequency

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture (Routines & Rituals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small groups should begin as soon as routines are established early in the fall…part of building these routines includes developing independence while you are taking a group</td>
</tr>
<tr>
<td>• Students meet a minimum of 3 consecutive days for those who are below the benchmark - consider meeting daily for your most at risk learners</td>
</tr>
<tr>
<td>• Students meeting or exceeding can meet with the teacher 1-2 times a week, however, not all students need to be in a group at the same time</td>
</tr>
<tr>
<td>• One on one conferring may better serve some of your students</td>
</tr>
<tr>
<td>• Remember that small group instruction can be more than guided reading groups. Focus could also be on CAP (concepts about print) skills, early literacy behaviors, letter/sounds and word work</td>
</tr>
<tr>
<td>• Small groups can last anywhere between 5 to 15 minutes depending on the purpose of the lesson</td>
</tr>
</tbody>
</table>
Independent Reading in Kindergarten

INDEPENDENT READING MENU

<table>
<thead>
<tr>
<th>Independent reading from “Good Fit” or “Just Right” books</th>
<th>Word work activities (computerized, manipulatives, etc.)</th>
<th>Schools trained in GLAD may use GLAD strategies: Personal Explorations, Research Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written responses using text based evidence/Preparing for discussions</td>
<td>Listening to reading</td>
<td></td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

<table>
<thead>
<tr>
<th>Selection of appropriate text (“Good Fit” or “Just Right” books) is taught, modeled, and applied by students, then monitored by teachers throughout the year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)</td>
</tr>
<tr>
<td>- Classroom Environment & Culture (Use of Physical Environment and Classroom Routines and Rituals)</td>
</tr>
</tbody>
</table>

Kindergarten Specifications

<table>
<thead>
<tr>
<th>Children have time daily to read independently from “Good Fit” or “Just Right” books for extended periods of time. (The majority of this time is spent reading books at the children’s independent reading level.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>There is a variety of texts available for student choice in the classroom-The classroom library is organized so students can easily access texts (For example levels, genres, authors etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>- Student Engagement (Engagement Strategies and Talk)</td>
</tr>
<tr>
<td>- Classroom Environment & Culture (Use of Physical Environment and Classroom Routines and Rituals)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students have book boxes or bags with multiple texts they can read independently of different lengths and genres allowing them to develop stamina for extended periods of time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>- Student Engagement (Engagement Strategies and Talk)</td>
</tr>
<tr>
<td>- Classroom Environment & Culture (Use of Physical Environment and Classroom Routines and Rituals)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students are practicing the strategies they have been taught.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
<tr>
<td>- Purpose (Standards & Learning Target and Teaching Points)</td>
</tr>
<tr>
<td>- Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)</td>
</tr>
<tr>
<td>- Student Engagement (Intellectual Work, Engagement Strategies and Talk)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Teach students how to choose just right books and where to put them</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Teach the ways to read a book (Read the words, Read the Pictures, Retell the Story.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Build stamina for this starting in September. Start with 1 minute, and then build time daily.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Daily 5 - Read to Self time, SSR, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Give students independent reading level books to start out the year and teach them how to choose books throughout the year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Variety of fiction and non-fiction text available that is leveled and/or organized(genres, authors, themes, topics) in a way that is accessible to students</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• High interest books(student may only be reading pictures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Leveled books</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Create a comfortable classroom library area</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Create space in the classroom where students can keep a book box or bag with their name on it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Make book boxes/bags accessible for daily use</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Conferring (meeting) with students while they independently read. For example, checking for understanding, looking at the beginning sound, checking for sight words, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
</tr>
</tbody>
</table>
Independent Reading in Kindergarten Continued

<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
</table>
| Writing is a natural extension to independent reading 1-2 times a week. Acceleration in reading happens when reading and writing experiences are paired.
CEL 5D
Curriculum & Pedagogy (Teaching Approaches and/or Strategies, Scaffolds for Learning) | • Provide journals or paper for students to use to write about what they have been reading
• Provide readers response sentence stems as a scaffold |
| Worksheets are rarely if ever used (this does not refer to graphic organizers or thinking maps).
CEL 5D
Curriculum & Pedagogy (Teaching Approaches and/or Strategies, Scaffolds for Learning) | • The majority of time in independent reading should be spent reading. |

Materials to assist with this learning component

CEL 5D Classroom Environment & Culture (Use of physical Environment)

- Classroom library with books
- Book boxes or bags
- Pencils, paper, or writing journals
- Computers, Ipads, and other technology
- Magnetic letters, white boards, letter tiles, etc.

Configuration of learning environment (Look like)

CEL 5D Classroom Environment & Culture

- Cozy spots to read around the classroom that remain visible to the teacher
- Bean bags, pillows
- Area for listening to reading (if using a computer)

Student Engagement activities/strategies

CEL 5D Student Engagement (Engagement Strategies and Talk)

- Modeling an excitement about reading
- Modeling what it looks like and sounds like to read to self (Anchor charts)
- Students share what they read and write about
- Word work activities (white boards, magnetic letters)

Time considerations and frequency

CEL 5D Classroom Environment & Culture (Routines & Rituals)

- Daily, building stamina throughout the year.....this varies depending on the menu activities.
- A typical literacy (ELA) block is 90 minutes
One on One Conferring with Reading in Kindergarten

<table>
<thead>
<tr>
<th>ONE ON ONE CONFERRING MENU</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orally assess for strengths and challenges</td>
<td>Set goals</td>
</tr>
<tr>
<td>Monitor strategy use</td>
<td>Individualized instruction</td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

- Formal and on-going informal assessments are administered and analyzed in order to guide further instruction.

CEL 5D+
- **Curriculum & Pedagogy (Teaching Approaches and/or Strategies, Curriculum)**
- **Assessment for Student Learning (Assessments, Adjustments)**

Kindergarten Specifications

- **F & P (Fountas and Pinnell) assessment**
- **Anecdotal notes**
- **Running records**
- **KRA (Kindergarten Reading Assessment)**
- **Observations**

One on One Conferring Menu

<table>
<thead>
<tr>
<th>Orally assess for strengths and challenges</th>
<th>Set goals</th>
<th>Support and/or check book choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor strategy use</td>
<td>Individualized instruction</td>
<td></td>
</tr>
</tbody>
</table>

Students and teachers confer on a regular basis based on student need. Students reading below benchmark confer with the teacher at least once a week.

CEL 5D+
- **Assessment for Student Learning (Assessments, Adjustments)**
- **Student Engagement (Talk)**

Goal setting by the teacher and student is an integral part of the conference cycle.

CEL 5D+
- **Purpose (Standards & Learning Target and Teaching Points)**
- **Assessment for Student Learning (Assessments, Adjustments)**

Book choices are monitored by the teacher throughout the year to ensure students are practicing primarily with independent or instructional level text.

CEL 5D+
- **Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)**

The teacher monitors student’s application of strategies taught through 1:1 conferring and response logs.

CEL 5D+
- **Purpose (Standards)**
- **Curriculum & Pedagogy (Scaffolds for Learning)**

Goals could be strategy related
- Students are expected to know their goals
- Daily 5/Cafe - resource for setting goals

Access to book room
- Teach kids how to find “good fit” books
- Students read a passage/book at conferences
- Students have access to gather new books “shopping” 2 to 4 times a month. In addition, add class/student made readers/books.

Confering note system/notebook
- Check in with students to remind them about a skill you are working on

Use benchmarks to assist in goal setting
- Make students accountable for goal achievement
Blueprint Key Attributes

| The teacher can utilize GLAD charts, team tasks, independent tasks, and portfolios with students to re-teach content and set goals. |

CEL 5D+

- Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)
- Classroom Environment and Culture (Use of Physical Environment)

Kindergarten Specifications

- Use GLAD charts, chants and tasks

Materials to assist with this learning component

- CEL 5D+ Classroom Environment & Culture (Use of physical Environment)

- GLAD training
- Fountas & Pinnell kit
- LLI kit
- Student Texts - LOTS at lower levels A, B, C, D
- Record Keeping
- Opportunity to observe other teachers doing 1:1 conferring
- Planning with teachers
- Book Box for each kid

Configuration of learning environment (Look like)

- CEL 5D+ Classroom Environment & Culture

- U-shaped table, table or floor space
- The small group area is placed where the teacher can oversee the rest of the class
- GLAD charts posted for reference
- Students are working independently while you are conferring with a student

Student Engagement activities/strategies

- CEL 5D+ Student Engagement (Engagement Strategies and Talk)

- Students have access to book boxes
- Students need to have time to prepare and practice answering questions and setting goals
- Review skills kids are learning

Time considerations and frequency

- CEL 5D Classroom Environment & Culture (Routines & Rituals)

- Low students are met with at least once a week
- Meeting and exceeding students are met with every other week
- Spend 5-10 minutes on each student
Whole Group Writing in Kindergarten

Whole Group Writing Menu

<table>
<thead>
<tr>
<th>Demonstration/Modeling</th>
<th>Interactive Writing or Interactive Editing/Revising</th>
<th>Genre-Immersion and Discovery</th>
<th>Schools trained in GLAD may use GLAD strategies: T-graph for social skills, Inquiry chart, Input Charts Interactive Journal Cooperative Strip Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Writing</td>
<td>Share Circle/Debrief and Celebrating published work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

- **Aligned to priority standards, developing critical writing behaviors or skills/strategies that the majority of the class needs support with. The standard or objective for the lesson is clearly stated or posted.**

 - **CEL 5D+**
 - Purpose (Standards & Learning Target and Teaching Points)
 - Curriculum & Pedagogy (Scaffolds for Learning)

Kindergarten Specifications

- **Kid-friendly “I can” statements with visuals posted and clearly stated throughout the lesson**
- **Standards/Targets are communicated throughout the lesson and checks for student understanding**

Occurs daily and can be in a Lesson format (15-45 minutes depending on the age of students) or a mini-lesson format (5-15 minutes).

 - **CEL 5D+**
 - Curriculum & Pedagogy (Curriculum and Teaching Approaches and/or Strategies)
 - Classroom Environment and Culture (Classroom Routines and Rituals)

Multiple mini-lessons may be part of a literacy block.

 - **CEL 5D+**
 - Purpose (Standards & Learning Target and Teaching Points)
 - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)

Skills and strategies are taught/reviewed connected to a published text, teacher written text or student written text whenever possible ensuring the transfer of skills to authentic application.

 - **CEL 5D+**
 - Purpose (Standards & Learning Target and Teaching Points)
 - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)
 - Assessment for Student Learning (Adjustments)
 - Student Engagement (Talk)

Assessed for Student Learning (Adjustments)

- **Shared Writing mini-lessons could include:**
 - Interactive Writing (share the pen with students or teacher writes what students share)
 - Modeled Writing (direct instruction)
 - Lessons range in focus from genre instruction, conventions and word work lessons
 - Model different forms of writing; poetry, making a list, letter writing, narrative, expository, persuasive/opinion writing

- **Class-made books
 - Big books
 - Shared Writing
 - Students provide peer feedback-editing process using “Love, wish, wonder..” statements
 - Author’s Chair
<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
</table>
| Mentor texts are often used to illustrate exemplary author’s craft (Text may be one that was also used for reading instruction). There is a balance of 30% narrative, 35% informational text, and 35% opinion writing emphasized. (These may be part of a unit of study such as a GLAD or district unit or authentically embedded in ELA tasks) | • Relevant, high-interest mentor texts
• Balance of different types of Genre |
| **CEL 5D+**
Curriculum & Pedagogy (Curriculum and Teaching Approaches and/or Strategies) | |
| There is a balance of longer units of study and short writing projects. | • Research projects
• Field trip stories
• Science journals
• GLAD units
• Daily writing journals/folders
• Whole group writing- gradual release to independent writing projects
• narrative, expository, persuasive writing |
| **CEL 5D+**
Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning) | |
| Topic, audience, and purpose are always considered to engage students in authentic, highly motivating writing experiences. | • Class created posters, charts
• Writing prompts provided for support
• Free write
• Narrative writing
• “Weekend News” |
| **CEL 5D+**
Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)
Student Engagement (Intellectual Work, Engagement Strategies and Talk) | |
| The teacher uses strategies to ensure all students are engaged in the learning as evidenced by student participation. | • Author’s chair
• self-assessment
• writing rubrics
• shared writing |
| **CEL 5D+**
Student Engagement (Intellectual Work, Engagement Strategies and Talk)
Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning) | |
| Listening and speaking standards are addressed in every lesson as students turn and talk, participate in discussions, and interact with the learning in meaningful ways. | • Author’s Chair- positive critique of student work by peers
• Partner Sharing/Peer Review |
| **CEL 5D+**
Purpose (Standards & Learning Target and Teaching Points)
Student Engagement (Intellectual Work, Engagement Strategies and Talk) | |
| Language standards are addressed through the creating and editing of text. | • Writing Process
• Shared writing/modeling |
| **CEL 5D+**
Purpose (Standards & Learning Target and Teaching Points)
Student Engagement (Intellectual Work, Engagement Strategies and Talk) | |
Materials to assist with this learning component

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture (Use of physical Environment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Easel, chart paper and markers</td>
</tr>
<tr>
<td>• Dry erase markers</td>
</tr>
<tr>
<td>• Pencils and crayons</td>
</tr>
<tr>
<td>• Stamps</td>
</tr>
<tr>
<td>• Blank booklets and/or primary journals</td>
</tr>
<tr>
<td>• Folders</td>
</tr>
<tr>
<td>• Word walls</td>
</tr>
<tr>
<td>• Sentence Starters</td>
</tr>
<tr>
<td>• Kid friendly writing rubrics</td>
</tr>
<tr>
<td>• Binder, folder or journal to keep writing projects whole group and independent work</td>
</tr>
</tbody>
</table>

Configuration of learning environment (Look like)

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Carpet space</td>
</tr>
<tr>
<td>• View of easel and other instructional materials</td>
</tr>
<tr>
<td>• Access to writing supplies/writing center</td>
</tr>
</tbody>
</table>

Student Engagement activities/strategies

<table>
<thead>
<tr>
<th>CEL 5D+ Student Engagement (Engagement Strategies and Talk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mini lessons (stages of writing, writing for different purposes, mechanics, writing process)</td>
</tr>
<tr>
<td>• Writing based upon student interest (all about me, illustrator study, personal interest), share finished work (partner share, whole group share)</td>
</tr>
<tr>
<td>• Whole group ("prewrite") brainstorming, think pair share, prewriting strategies, and editing strategies.</td>
</tr>
</tbody>
</table>
Small Group Writing in Kindergarten

SMALL GROUP WRITING MENU

<table>
<thead>
<tr>
<th>Guided Writing Group</th>
<th>Peer partnership writing, revising, editing</th>
<th>Topic/Genre Writing Group- an extension to the Topic/Genre Reading Group</th>
</tr>
</thead>
</table>

Blueprint Key Attributes

| **Students are grouped based on a similar instructional need as determined by prior assessment (formal and/or informal).** |
| **CEL 5D+** |
| - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning) |
| - Assessment for Student Learning (Assessments, Adjustments) |

Kindergarten Specifications

- Capitalization, spacing, correct letter formation, writing a complete sentence, using sight words, sound spelling.
- Writing more details to a story.
- Labeling pictures.
- Narrate an event in order and provide a reaction to what happened.

The lesson focus, skill, strategy or standard is explicitly stated or posted.

- **CEL 5D+**
 - Purpose (Standards & Learning Target and Teaching Points)
 - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)

Groups are small (no more than 5) and flexible.

- **CEL 5D+**
 - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)

Writing partnerships are an integral part of the writer’s workshop as students brainstorm ideas, orally communicate their stories, partner edit, or give feedback for revision.

- **CEL 5D+**
 - Student Engagement (Intellectual Work, Engagement Strategies and Talk)

Listening and speaking standards are addressed in small group writing sessions as students turn and talk, participate in discussions, and interact with each other in meaningful ways.

- **CEL 5D+**
 - Student Engagement (Intellectual Work and Talk)

Language standards are addressed through the creating and editing of text.

- **CEL 5D+**
 - Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning)
Materials to assist with this learning component

CEL 5D+ Classroom Environment & Culture (Use of physical Environment)

- Paper
- Pencils
- Erasers
- Crayons
- Alphabet chart
- Primary lined paper
- Student Rubrics

Optional

- White boards
- White board markers and erasers
- Writing word wall
- Picture Dictionary
- Sentence strips for sentence stems

Configuration of learning environment (Look like)

CEL 5D+ Classroom Environment & Culture

- U-shaped table or small table, or floor space
- The small group area is placed where the teacher can oversee the rest of the class
- Materials are easily accessible often on a shelf nearby
- Easel or chart paper is positioned so all children can see and teacher can utilize
- Tubs with student materials, files by group
- Resource: Debbie Diller, *Spaces and Places*

Student Engagement activities/strategies

CEL 5D+ Student Engagement (Engagement Strategies and Talk)

- Students up close
- Students have frequent opportunities to engage in conversation about their writing, both with the teacher and with each other (5 minutes of instruction to 1 minute process time/turn and talk)
- GLAD strategies
- Plenty of student choice and voice

Time considerations and frequency

CEL 5D+ Classroom Environment & Culture (Routines & Rituals)

- Small groups should begin as soon as routines are established early in the fall....part of building these routines includes developing independence while you are taking a group
- Students meet as needed based on formative assessments
- One on one conferring may better serve some of your students
- Small groups can last anywhere between 5 to 15 minutes depending on the purpose of the lesson
Independent Writing in Kindergarten

<table>
<thead>
<tr>
<th>INDEPENDENT WRITING MENU</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
</table>
| Research a topic, genre, or author as a springboard for writing | • Build stamina throughout the year
- start with 10 minutes working our way to 20 minutes
• Teacher model expectations (i.e. how to use a journal, date on each page, etc.) |
| Experimenting with author’s craft based on a mentor text | |
| Independent writing aligned to audience, topic, and purpose | |
| Pre-write/Draft Revise/Edit/Publish | |
| Journaling/free write | |
| Development of illustrations or text features to support writing | |

Blueprint Key Attributes

| Children have time daily to write independently for extended periods of time. | **CEL 5D+**
- Classroom Environment and Culture (Classroom Routines and Rituals)
- Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning) |

Kindergarten Specifications

| Students practice the strategies they have been taught or “try on” writing techniques they have learned about by studying mentor texts. | **CEL 5D+**
- Purpose (Standards)
- Curriculum & Pedagogy (Teaching Approaches and/or Strategies and Scaffolds for Learning) |

| Resources created by teachers and students support independent work (for example word walls, name charts, letter & sound charts, etc.). | **CEL 5D+**
- Curriculum & Pedagogy (Curriculum and Teaching Approaches and/or Strategies)
- Classroom Environment and Culture (Use of Physical Environment) |

| Students write texts in a variety of genres keeping a balance of narrative, informational, and opinion writing. | **CEL 5D+**
- Purpose (Standards & Learning Target and Teaching Points)
- Curriculum & Pedagogy (Curriculum) |

| There is a balance of creating short writing pieces in draft form and taking others through the writing process | **CEL 5D+**
- Curriculum & Pedagogy (Curriculum)
- Student Engagement (Intellectual Work, Engagement Strategies and Talk) |

| • Anchor charts that are co-created
• Color chunking on charts (GLAD)
• Personal Dictionary | |
| • Teacher looks for student examples and shows them using the document camera
• Anchor chart available for students to reference and add to |
Independent Writing in Kindergarten Continued

<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illustrations and graphics are used to convey information and enhance writing.</td>
<td>• Kid-friendly rubric/anchor chart to reference</td>
</tr>
<tr>
<td>CEL 5D+</td>
<td>• Labeling pictures</td>
</tr>
<tr>
<td>Curriculum & Pedagogy (Curriculum and Teaching Approaches and/or Strategies)</td>
<td>• Adding details to the pictures</td>
</tr>
<tr>
<td>Writing is used as a tool across disciplines to capture new information, document thinking, and foster deeper learning.</td>
<td>• Kids are writing across the content areas.</td>
</tr>
<tr>
<td>CEL 5D+</td>
<td>• Readers Response Journals</td>
</tr>
<tr>
<td>Curriculum & Pedagogy (Curriculum and Teaching Approaches and/or Strategies)</td>
<td>• Thinking of writing with text features; pictures with labels, table of contents, conversation bubbles</td>
</tr>
</tbody>
</table>

Materials to assist with this learning component

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture (Use of physical Environment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Journals</td>
</tr>
<tr>
<td>• Containers with sharpened pencils and crayons</td>
</tr>
<tr>
<td>• Access to word wall</td>
</tr>
<tr>
<td>• Access to anchor charts</td>
</tr>
<tr>
<td>• Various types of writing paper</td>
</tr>
<tr>
<td>• Writing rubrics</td>
</tr>
<tr>
<td>• Alphabet chart and name chart</td>
</tr>
</tbody>
</table>

Configuration of learning environment (Look like)

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Comfortable places to write</td>
</tr>
<tr>
<td>• Visible access to charts and word wall</td>
</tr>
<tr>
<td>• Materials easily accessible</td>
</tr>
<tr>
<td>• Anchor chart of what independent writing looks & sounds like</td>
</tr>
</tbody>
</table>

Student Engagement activities/strategies

<table>
<thead>
<tr>
<th>CEL 5D+ Student Engagement (Engagement Strategies and Talk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Student choice on writing topics</td>
</tr>
<tr>
<td>• Opportunity to share their writing ideas before and then their work after</td>
</tr>
</tbody>
</table>

Time considerations and frequency

<table>
<thead>
<tr>
<th>CEL 5D+ Classroom Environment & Culture (Routines & Rituals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Write everyday</td>
</tr>
<tr>
<td>• Build time as stamina increases</td>
</tr>
<tr>
<td>• Start with 10 minutes working our way to 20 minutes</td>
</tr>
</tbody>
</table>
One on One Conferring with Writing in Kindergarten

ONE ON ONE CONFERRING WRITING MENU

<table>
<thead>
<tr>
<th>Assess writing for strengths and challenges</th>
<th>Coach for strategy/skill application</th>
<th>Provide immediate feedback on written work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal Setting</td>
<td>Individualized instruction</td>
<td></td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

- Formal and on-going informal assessments are administered and analyzed in order to guide further instruction.
- **CEL 5D+**
 - Assessment for Student Learning (Assessments, Adjustments)

Kindergarten Specifications

- **CEL 5D+**
 - Assessment for Student Learning (Adjustments)
 - Curriculum & Pedagogy (Scaffolds for Learning)
 - Student Engagement (Talk)

- Small group mini-lessons (progression: pictures, beginning sounds, labeling pictures, stretching sounds to write words, writing a complete sentence with 1-2 details).
- Strategic conferencing with skill based purpose (when conducting observations, small group, whole group writing).
- Author’s chair, e.g. TAG- T (tell what you like), A (ask a question), G (give a suggestion), Teacher will model the structure.
- Peer editing using class checklist and/or rubric.

- Individual goal setting by the teacher and student is an integral part of the conference cycle.
- **CEL 5D+**
 - Purpose (Standards)
 - Curriculum & Pedagogy (Scaffolds for Learning)
 - Assessment for Student Learning (Assessments, Adjustments)

- Using “I can” statements from CCSS (see CCSS standards) posted visibly around the classroom.
- Students would establish individual goals
- Self assessment using rubric and then teacher will use same rubric and compare.

- Conferences often include individualized instruction and timely specific feedback to accelerate skill and craft.
- **CEL 5D+**
 - Purpose (Standards)
 - Curriculum & Pedagogy (Scaffolds for Learning)
 - Assessment for Student Learning

- Progression of writing
- Next steps
- Struggling students provide mini-lesson specific to skill being learned

Materials to assist with this learning component

- **CEL 5D+ Classroom Environment & Culture (Use of physical Environment)**
- Variety of research based writing resources. Lucy Calkins, Growing Up Writing (book bought through building money), School Wide (curriculum), writing continuum (Kate from Camelot), Bonnie Campbell Hill writing continuum, teacher-created checklists/rubrics,
- Debbie Diller, Spaces and Places
- writing paper, pencils, markers
- conferencing folders (to keep writing samples of students)
- portfolios
- anecdotal records
- E-binders (Portland writing units)
- White boards, easels, chart paper (lined/unlined).
- alphabet chart/strip
- kidney table (small group table)
Configuration of learning environment (Look like)

CEL 5D+ Classroom Environment & Culture

- Rotation of one-on-one meetings with the teacher and/or as teacher is monitoring the writing; teacher will confer with student at student's desk regarding writing.
- Resources on the wall with student's names (word wall accessible to students, writing process progression)
- High frequency word folders
- Student critical word resource (can include people names, color words, common places, family words, emotion words)
- Learning Language Inventory (LLI) linking alphabet chart
- Accessible writing supplies and seating (for students who wish to work alone or in small group an area where this is possible)
- Word families posters (color coded word wall)
- CCD (cognitive content dictionary), Picture dictionary, vocabulary charts (related to previous units of GLAD) having a special chair for Author’s chair
- Rug for meeting area
- *I Can* statements (writing standards) are posted/visible in the classroom

Student Engagement activities/strategies

CEL 5D+ Student Engagement (Engagement Strategies and Talk)

- Think-Pair-Share (TPS)
- Partner Talk
- Total Physical Response (TPR)
- Student Choice writing
- Zoo phonics (individual school bought curriculum)
- Small group work
- Mini-lessons (whole group)
- Self editing
- Shared writing
- Interactive writing
- Author's chair
- GLAD strategies using writing (see below)
- Anchor Charts of what it looks like/sounds like to be a productive writer

Time considerations and frequency

CEL 5D+ Classroom Environment & Culture (Routines & Rituals)

- Once a week check in with all students (could also occur during small group time)
- 2x a week focus on a group of 2-3 students, (3-5 minutes per student), depending on your schedule
- Author’s chair 1x a week (as needed or as year progresses)
- Writer’s share at end of writer’s workshop
- For students who are below and approaching writing standards meet with teacher 3x a week.
- Another time to meet with students regarding writing can be during small reading groups, at Author’s Chair students and teacher will provide support for goals for next steps.
- GLAD components using writing (expert groups, observation charts, cooperative strip paragraph, Exploration Report).
The following principles are philosophical statements that underpin the standards and resources of this math blueprint. They should guide the construction and evaluation of a mathematics program in FWPS Elementary Schools.

<table>
<thead>
<tr>
<th>GUIDING PRINCIPLES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiding Principle 1</td>
<td>Traditionally, math classrooms in the United States have focused on small, discrete skills with little to no connection between them. When looking at reform in mathematics education, the TIMSS study (Adding it Up) shows that countries out-performing the United States in math spent more time on fewer topics. The transition to fewer, more focused standards is evident in the CCSSM. Within the Common Core Standards, the Publisher’s Criteria states that 65-85% of instructional time must be spent on the major work of the grade. With the higher end (75-85%) in K-2. The purpose is not to “get through” topics, but deepen the understanding of major topics in order for students to gain a stronger foundation. Supporting standards enhance the major work and provide coherence. The supporting standards are taught through the lens of major work (10-25%), and the additional standards are taught only 5-15% of the time in an instructional calendar. The focus in the Common Core State Standards ensures that students meet the most important standards for their grade level and progress to college and career readiness.</td>
</tr>
<tr>
<td>Guiding Principle 2</td>
<td>The Common Core State Standards for Mathematics were built from research based progressions. Careful attention should be placed on understanding the progressions (http://ime.math.arizona.edu/progressions/) and delivering instruction based on the foundation that has been built. When people talk about coherence, they often talk about making connections between topics. The most important connections are vertical: the links from one grade level to the next that allow students to progress in their mathematical education. That is why it is critical to think across grades and examine the progressions in the standards to see how major content develops over time… Maintaining these progressions in the implementation of standards will be important for helping all students learn mathematics at a higher level…To do this, instruction should reflect the progressions in which the CCSSM are built.</td>
</tr>
</tbody>
</table>

KEY

Alignment to 5-D Framework: (See pages 9–5 and 9–6)

- Purpose
- Student Engagement
- Curriculum & Pedagogy
- Classroom Environment & Culture
- Student Engagement

MATH

Not only do the standards build, but similar strategies can be used across domains and grade levels (number lines, area models, tape diagrams, base ten blocks, etc.). By providing coherence within content and strategies, students are more successful.
Guiding Principle 3

...Allow all students access to rigorous and relevant content that prepares them for college/career

Alignment to 5-D Framework:

- **Purpose**
- **Student Engagement**

Teachers engage students in conceptual and procedural applications of math involving cognitively-demanding, relevant tasks with multiple entry points. Teachers pursue conceptual understanding, procedural skill and fluency, and application with equal intensity (achievethecore.org). Conceptual understanding means teachers provide opportunities for students to deeply understand mathematical relationships. Students see math as more than a set of isolated skills or mnemonics. Teachers devote class time to processes and strategies that students must master fluently. Through applications, students see the relevance of mathematics to their lives. Each component of math instruction (curriculum, instruction and assessment) must incorporate the Standards for Mathematical Practice, the habits of mind that proficient mathematical thinkers have.

Guiding Principle 4

...Are responsive to the background, interests and needs of the students.

Alignment to 5-D Framework:

- **Student Engagement**
- **Curriculum and Pedagogy**

Since all new knowledge is built on previous knowledge, students’ strengths, interests, cultures and backgrounds should be effectively incorporated into the classroom. The uniqueness and diversity of each child is our greatest asset in education. Parent and community relationships are pivotal in understanding the diverse learners of one’s class and cultural backgrounds. Math curriculum, instruction, and assessment must be grounded in culturally responsive practices of relevance, identity, belonging and community that serve to best engage all students. High-quality math curriculum and instruction should be culturally relevant to the students being served and prepare all students for a multicultural world.

Guiding Principle 5

...Ensure all students can learn and be successful through differentiated experiences.

Alignment to 5-D Framework:

- **Curriculum and Pedagogy**

Recognizing that learners are different, teachers use flexible and fluid instructional designs by attending to ongoing formative assessments. Differentiation is done through the content, process or product (Tomlinson) using high quality curriculum materials. The learning progressions pinpoint key learning that must occur prior to grade level work for struggling students and opportunities to deepen and enrich understanding for acceleration. Effective teachers differentiate instruction but hold the same learning outcomes for all students.

Guiding Principle 6

...Incorporate a variety of ongoing formative and summative assessments yielding valuable actionable information to support student growth.

Alignment to 5-D Framework:

- **Assessment for Student Learning**

Meaningful assessment drives instruction and affects learning. Assessment is an integral part of teaching and learning. Purposeful assessment practices help teachers and students understand where they have been, where they are now, and where they might go next. No one assessment can provide sufficient information to plan teaching and learning. Using different types of assessments as part of instruction results in useful information about student understanding and progress. Educators should use this information to guide their own practice and in partnership with students and their families to reflect on learning and set future goals.
Guiding Principle 7
...Develop computational fluency with equal time spent on procedural and conceptual understanding

Alignment to 5-D Framework:
- **Purpose**

<table>
<thead>
<tr>
<th>Computational fluency means students can use strategies of operations specific to their grade level flexibly, accurately, and efficiently. Efficiently refers to students keeping track of their method used and getting an answer reasonably fast. Automaticity of facts allows access to more complex problems and must be approached with equal time spent on conceptual and procedural understanding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Standards are explicit where fluency is expected...Progress toward these goals is interwoven with students’ developing conceptual understanding of the operations in question...Methods and algorithms are general and based on principles of mathematics, not mnemonics or tricks...Like learning any language, we learn by using it. Sufficient practice with algebraic operations is provided so as to make realistic the attainment of the Standards as a whole.</td>
</tr>
<tr>
<td>K-8 Publishers Criteria for the Common Core State Standards in Mathematics pg. 10</td>
</tr>
</tbody>
</table>

Guiding Principle 8
...Establish a collaborative community that allows students to embrace challenges and make mistakes

Alignment to 5-D Framework:
- **Purpose**
- **Student Engagement**
- **Classroom Environment and Culture**

<table>
<thead>
<tr>
<th>Students take academic risks, persevere through problems and embrace challenges. They are part of a community environment where it is okay to make mistakes, and learn from others. Misconceptions are discussed and readdressed through teacher-student, teacher-class, and student-student collaboration. There are frequent opportunities for students to work together in solving a variety of single and multi-step problems. Teachers and peers encourage multiple representations and explanation of problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownership of learning is shared between the teacher and student. The teacher creates opportunities to elevate the status of students in his/her class by creating opportunities for students to lead the learning. All students feel their voice is valued equally by their teacher and peers.</td>
</tr>
</tbody>
</table>

Guiding Principle 9
...Emphasizes mathematical reasoning and communication

Alignment to 5-D Framework:
- **Student Engagement**

| **Students reason with mathematics. They critique arguments of self and others, investigate and make conjectures, develop and evaluate proofs and arguments, select various types of reasoning and are precise in mathematical language to communicate understanding.** |

Guiding Principle 10
...Attends to literacy development within the mathematics classroom

Alignment to 5-D Framework:
- **Curriculum and Pedagogy**

<table>
<thead>
<tr>
<th>Reading, writing and speaking skills are critical in students’ ability to learn mathematics. Students must be able to interpret vocabulary, symbols and text in regards to the math they are learning. A mathematics classroom that attends to literacy emphasizes contextual problems, math media sources, written assignments, and mathematical discourse. In doing this, students develop reasoning skills, become precise in their mathematical language and can better express themselves in their mathematical understanding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the Application of Common Core State Standards for English Learners: ELLs are capable of participating in mathematical discussions as they learn English. Mathematics instruction for ELL students should draw on multiple resources and modes available in the classrooms—such as objects, drawings, inscriptions, and gestures—as well as home languages and mathematical experiences outside of school. Mathematical instruction should address mathematical discourse and academic language. (CCSSO, 2011, p.2)</td>
</tr>
</tbody>
</table>

The preceding guiding principles are adapted from the Mathematics Frameworks of The Wisconsin Department of Public Instruction and the Massachusetts Department of Elementary and Secondary Education, the text, Pearson Custom Education Teaching Mathematics Equitably to All Students and the Publisher’s Criteria for Common Core State Standards in Mathematics.
Understanding the Continuum of Learning for Counting and Cardinality

Learning Pathways for Counting and Cardinality

Alignment with Teaching Strategies Gold

<table>
<thead>
<tr>
<th>4 – 5 years</th>
<th>Counting</th>
<th>Subitizing</th>
<th>Comparing and Ordering</th>
</tr>
</thead>
</table>
| **Teaching Strategies Gold 20a-c** | - Count to 20 and beyond.
- Count 10-20 objects accurately.
- Gives next number is sequence (1 -10).
- Count out 10 objects.
- Identify numerals 1 -10.
- Write some numerals and connects each to counted objects. | - Instantly recognize and name the number of items in a set of four to five.
- Make a small collection with the same number as another collection. | - Use comparative language (more, less, same) to compare collections up to 10 by counting, even when the collection with the larger quantity of objects is made up of smaller objects.
- Order three objects by one characteristic. |

<table>
<thead>
<tr>
<th>5 and Kindergarten</th>
<th>Counting</th>
<th>Subitizing</th>
<th>Comparing and Ordering</th>
</tr>
</thead>
</table>
| **Teaching Strategies Gold 20a-c** | - Count to 100 by ones and tens.
- Count forward from a given number.*
- Write and represent numbers to 20.*
- Count to tell “How many?” to 20.
- Count out objects to 20.* | - Recognize and name the number of items in a set, up to five.
- Conceptually subitize to 10. | - Show comparing situation with objects or in a drawing and match or count to find out which is more and which is less for two numbers less than or equal to 10. NRC |
Whole Group Math for Kindergarten

Whole Group Math Instruction is used for: (10-30) or (mini-lesson 5-20 minutes) Introducing new concepts, new vocabulary, spiral review, and explicit strategy instruction.

<table>
<thead>
<tr>
<th>Whole Group Math Menu</th>
<th>Task-Based Lesson - Before/During/After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct and Explicit Instruction - Gradual Release Model - Skills and Strategies</td>
<td>(Full-lesson 15-45 minutes - Mini 5-15 minutes)</td>
</tr>
<tr>
<td>Teachers should model new skill. This should also include multiple hands on practice of new skill/concept and eventual independent practice.</td>
<td>Problem solving with real world situations and problems. Independently and in small groups, students are working to solve problems. Teachers do not give answers during the problem solving time. Students share out thinking at the end of the time. The end is where most of the learning is occurring as teacher is helping identify successful strategies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Whole Group Math Menu</th>
<th>Task-Based Lesson - Before/During/After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think Aloud</td>
<td>(5-10 minutes)</td>
</tr>
<tr>
<td>Demonstrating problem solving and verbalizing the thinking process.</td>
<td>GLAD Strategies</td>
</tr>
<tr>
<td>(10-30 minutes)</td>
<td></td>
</tr>
<tr>
<td>Math vocabulary and geometry, positional words.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blueprint Key Attributes</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligned to Grade Level Common Core State Standards for Mathematics and the Standards for Mathematical Practice</td>
<td>“I can” statements with visual supports for understanding - posted clearly and referred to throughout the lesson</td>
</tr>
<tr>
<td>CEL 5D+</td>
<td>Use district or school curriculum map to determine the standard or skills/strategies to develop the lesson</td>
</tr>
<tr>
<td></td>
<td>Use diagnostic assessment data to determine the skills/strategies students need to meet the targeted CCSS</td>
</tr>
<tr>
<td></td>
<td>The purpose of the lesson is directly aligned to the CCSS or skills and strategies that students need.</td>
</tr>
<tr>
<td></td>
<td>Teacher communicates the learning target throughout the lesson and checks for student understanding.</td>
</tr>
<tr>
<td></td>
<td>Vocabulary is developed using a variety of meaningful strategies.</td>
</tr>
<tr>
<td></td>
<td>CEL 5D+</td>
</tr>
<tr>
<td></td>
<td>Expose kindergartners to math vocabulary</td>
</tr>
<tr>
<td></td>
<td>Picture Dictionary, Total Physical Response and/or Cognitive Content Dictionary (GLAD Strategies)</td>
</tr>
<tr>
<td></td>
<td>Vocabulary should be drawn out of text, or math instruction…. don’t teach it in isolation.</td>
</tr>
<tr>
<td></td>
<td>Provide multiple opportunities with saying and using the vocabulary word</td>
</tr>
<tr>
<td></td>
<td>Occurs daily – full or mini-lesson depending on instructional focus and/or time of year.</td>
</tr>
<tr>
<td></td>
<td>CEL 5D+</td>
</tr>
<tr>
<td></td>
<td>Lessons may be shorter in the fall and grow in lesson length as Kindergarten stamina grows.</td>
</tr>
<tr>
<td></td>
<td>Vocabulary is developed using a variety of meaningful strategies</td>
</tr>
<tr>
<td></td>
<td>CEL 5D+</td>
</tr>
<tr>
<td></td>
<td>Expose kindergartners to academic vocabulary</td>
</tr>
<tr>
<td></td>
<td>Picture Dictionary, Total Physical Response and/or Cognitive Content Dictionary (GLAD Strategies)</td>
</tr>
<tr>
<td></td>
<td>Provide multiple opportunities with saying and using the vocabulary word</td>
</tr>
</tbody>
</table>
Whole Group Math for Kindergarten

<table>
<thead>
<tr>
<th>Description</th>
<th>Strategies</th>
</tr>
</thead>
</table>
| The teacher uses strategies to ensure all students are engaged in the experience as evidenced by student participation | - Provide discussion questions to promote student engagement
- Provide opportunities for inquiry-based learning
- Provide opportunities for students to engage and experience the productive struggle |
| Differentiation occurs in planning by changing product, process or content (Tomlinson) | Develop whole group math lessons that are targeted to the majority of your students’ needs. Once the whole group lesson is developed, begin working on the scaffolds to support the growth of the ELLs and struggling math students to ensure that the content is accessible to all. |
| Formative assessment practices are embedded to inform instruction and/or extension | - Develop whole group math lessons that are targeted to the majority of your students’ needs. Once the whole group lesson is developed, begin working on the scaffolds to support the growth of the ELLs and struggling math students to ensure that the content is accessible to all. |
| The lesson intentionally targets the rigor needed in the standard/s and gains in cognitive complexity as time spent on the standard/s increases | - Develop whole group math lessons that are targeted to the majority of your students’ needs. Once the whole group lesson is developed, begin working on the scaffolds to support the growth of the ELLs and struggling math students to ensure that the content is accessible to all. |

CEL 5D+

- Curriculum & Pedagogy (Scaffolds for Learning)
- Student Engagement (Intellectual Work, Engagement Strategies and Talk)
Math Routines in Kindergarten

Math Routines are used for: (5-30 min daily) Spiral review, purposeful repetition of focus areas, promote necessary vocabulary, and building independence and individual growth towards focus areas.

Math Routine Menu

<table>
<thead>
<tr>
<th>Interactive Calendar (5-20 minutes)</th>
<th>Math Morning Meeting (10-20 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students should have their own calendar to hold active engagement and develop independence.</td>
<td>As part of the morning meeting, use math vocabulary and questions in message and math activities for components.</td>
</tr>
<tr>
<td>Problem or Number of the Day (5-15 minutes)</td>
<td>Counting Exercises (1-5 minutes)</td>
</tr>
<tr>
<td>Students can use their own problem solving journals or white boards to show work.</td>
<td>Songs, chants, kinesthetic movements, youtube, etc. These can be used as transitions during the day.</td>
</tr>
<tr>
<td>Graph or Question of the Day (2-5 minutes daily)</td>
<td>Estimation or Counting Jar (5-10 minutes weekly)</td>
</tr>
<tr>
<td>This can be used as attendance when students enter the class.</td>
<td>Students count and document how many items are in the jar. They may use tally marks, ten frame, number line, etc to show how many.</td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

| Groups are small (no more than 6) and flexible. Students practice to enhance, practice or remediate their skills and strategies in mathematics. |
| Students performing below the benchmark meet with the teacher more often than those on level or above level. This includes students who qualify for Title 1/LAP services. |
| Students performing below the benchmark meet with the teacher more often than those on level or above level. This includes students who qualify for Title 1/LAP services. |
| Formative assessment practices are embedded. |
| Students are aware of their personal learning goals, with the focus strategy/skill explicitly displayed or stated. |
| A system to hold students accountable to their individual work. |
| Students take ownership over their learning, involving student voice and choice. |
| Manipulatives, tools, picture file cards, and multiple representations support the learning. |
Small Group Math in Kindergarten

Small Group Math Instruction is used for: 6 students or less (5-30 min, use 2 -5 x per week) Differentiated instruction, remediated instruction, practice skills taught from whole class lesson, flexible strategy group, enrichment, can be done during math rotations/stations.

<table>
<thead>
<tr>
<th>SMALL GROUP MATH MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Strategy Groups</td>
</tr>
<tr>
<td>(10-20 minutes)</td>
</tr>
<tr>
<td>Focused on students’ common needs in a given strategy. The goal being to develop proficiency.</td>
</tr>
<tr>
<td>Differentiated practice from whole group lesson</td>
</tr>
<tr>
<td>(10-20 minutes)</td>
</tr>
<tr>
<td>Students actively participate in differentiated level/ enrichment activities.</td>
</tr>
<tr>
<td>Fluency Games</td>
</tr>
<tr>
<td>(10-15 minutes)</td>
</tr>
<tr>
<td>Using math vocabulary, students will work on varying levels of the same game (e.g. working on counting by 10’s and another group is counting by 1’s).</td>
</tr>
<tr>
<td>Work stations</td>
</tr>
<tr>
<td>(15-30 minutes)</td>
</tr>
<tr>
<td>Teacher works with students on their task; purposeful, conversation using vocabulary, working cooperatively….</td>
</tr>
<tr>
<td>One on one conferring - Progress monitoring</td>
</tr>
<tr>
<td>(3-5 minutes - as needed)</td>
</tr>
<tr>
<td>Teacher provides daily feedback to students during the following: differentiated practice, fluency games, and/or work stations.</td>
</tr>
</tbody>
</table>

Blueprint Key Attributes

Groups are small and flexible.

Students practice to enhance, practice or remediate their skills and strategies in mathematics.

Students work in collaborative groups to encourage mathematical discussion and vocabulary development.

Students performing below the benchmark meet with the teacher more often than those on level or above level.

Formative assessment practices are embedded.

Students take ownership over their learning, involving Student voice and choice.

Manipulatives, tools, picture file cards and multiple representations support the learning.
Math Centers/Workstations And Independent Work for Kindergarten

Math Centers/ Workstations and Independent Work is used for: (15-30 mins. 2-5 days/wk) Spiral review, repetition of focus areas, skill practice and meeting with small groups.

MATH CENTERS/WORKSTATIONS MENU

<table>
<thead>
<tr>
<th>Math Menu</th>
<th>Math Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15-30 minutes daily-over a period of days)</td>
<td>(15-45 minutes)</td>
</tr>
<tr>
<td>• Students are given a menu of tasks that must be completed in a given time.</td>
<td>• Students are free to choose any task.</td>
</tr>
<tr>
<td>• Tasks can be review, current topics, explore future topics.</td>
<td>• Encourage setting personal goals to help kids challenge themselves to work on needed skills.</td>
</tr>
<tr>
<td>• Students engage in the tasks and spend time purposefully, exercising choices over their learning.</td>
<td>• Students can choose when they are done with a station to move to another.</td>
</tr>
</tbody>
</table>

GLAD Team Tasks for those trained

(5-30 minutes)

Group math activity follows the structure for GLAD team tasks…. which allows for making all kids in the group accountable for the task.

Math Workshop

Math Workshop

• Students are free to choose any task.
• Encourage setting personal goals to help kids challenge themselves to work on needed skills.
• Students can choose when they are done with a station to move to another.

Blueprint Key Attributes

<table>
<thead>
<tr>
<th>The lesson focus, skill, strategy or standard is explicitly stated or posted at each station</th>
<th>Kindergarten Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEL 5D+</td>
<td>• Purpose is clearly stated or addressed in plan: “I can” statements with picture support so students know what skills/strategies they are working on</td>
</tr>
<tr>
<td>Purpose (Standards & Learning Target and Teaching Points)</td>
<td>• Routines/Stations are modeled through mini-lessons</td>
</tr>
<tr>
<td></td>
<td>• Co-create norms for material use and methods when first introducing a station</td>
</tr>
<tr>
<td></td>
<td>• Establish a system for individual and group accountability with the students</td>
</tr>
</tbody>
</table>

Kindergarten Specifications

<table>
<thead>
<tr>
<th>Groups are small (no more than 5) and flexible</th>
<th>CEL 5D+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Curriculum & Pedagogy (Curriculum, Teaching Approaches and/or Strategies and Scaffolds for Learning)</td>
</tr>
<tr>
<td></td>
<td>• Students move through Centers/Stations as their needs change</td>
</tr>
<tr>
<td></td>
<td>• Select strategic partnerships or groupings during this time</td>
</tr>
<tr>
<td></td>
<td>• Groups should be happening early on…as soon as you know their needs and have set some routines so students can work independently</td>
</tr>
</tbody>
</table>

A teacher can combine the structures above to create a model that works best for their class.
Resources

Math Activities and Ideas based on the CCSS major areas of focus

SAMPLE RESOURCES:

<table>
<thead>
<tr>
<th>COUNTING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K.CC.1</td>
<td>Count to 100 by ones and by tens</td>
</tr>
<tr>
<td>K.CC.2</td>
<td>Count forward beginning from a given number within the known</td>
</tr>
<tr>
<td></td>
<td>sequence (instead of having to begin at 1).</td>
</tr>
<tr>
<td>K.CC.4</td>
<td>Understand the relationship between numbers and quantities;</td>
</tr>
<tr>
<td></td>
<td>connect counting to cardinality.</td>
</tr>
</tbody>
</table>

Possible Activities:

- Songs
- Pipe cleaners and beads – tags on pipe cleaners – match correct # of beads
- Calendar math activities

Useful Materials and Manipulatives:

- 100 chart
- CD player
- Cubes
- Counting collections
- 10 frames
- Number books
- Rekenrek
- Counting trays
- Number lines
- Math Workstations – Debbie Diller
- Number Talks – Sherry Parrish
RECOGNIZING AND WRITING NUMERALS

| **K.CC.5** | Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. |
| **K.CC.3** | Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). |

Possible Activities:

- Fill in calendar/100’s chart
- “Minute to win it” – write numbers in a minute
- Johnnies math page – 10 frame game - website
- Illuminations – NCTM website
- Writing numbers when show base 10 and ones

Useful Materials and Manipulatives:

- Counting tools
- Calendar (blank)
- Number cards, number lines
- Subitizing cards
- Counting collections
- Ten frames
- Base 10 and ones
- Number Rhymes (ex. “start at the top and down you go”…)
COMPARING NUMBERS

<table>
<thead>
<tr>
<th>K.CC.6</th>
<th>Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.CC.7</td>
<td>Compare two numbers between 1 and 10 presented as written numerals.</td>
</tr>
</tbody>
</table>

Possible Activities:

- Top it – card game with students winning with the highest or the lowest number (formerly known “War”)
- Students act out stories about different scenarios in the classroom – Luisa had 4 books and Holly had 3 books. Who has more books?
- Build the vocabulary – more/greater than, less than, and equal in
- Dominos – Start with students simply matching dominoes to number cards with those numerals. Dominoes are placed face down and take turns flipping them over, one at a time. Students compare to see whose domino has more dots. Start with students simply matching dominoes to number cards with those numerals (dots are only on one side)
- After students are proficient with one sided dominoes, they then total all of the dots to play.
- “Grab bag” students each have a bag with several small treasures – teddy bear counters, plastic insects, a variety of realia, toys from dollar store. Be sure to include several of each item. Students take turns grabbing a handful of objects from a bag and lay these materials out one to one to see which they have more or fewer of. Extension: graph the results on paper.

Materials and Manipulatives:

- Deck of cards and/or Number Cards
- Dominos
- Realia
- Vocabulary anchor chart
ADDITION AND SUBTRACTION PROBLEM SOLVING

<table>
<thead>
<tr>
<th>K.OA.1</th>
<th>Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.OA.2</td>
<td>Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.</td>
</tr>
<tr>
<td>K.OA.3</td>
<td>Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$).</td>
</tr>
<tr>
<td>K.OA.4</td>
<td>Fluently add and subtract within 5.</td>
</tr>
</tbody>
</table>

Possible Activities:

- Math games – whole group > partner
- Act out story problems – addition and subtraction
- Shake and spill (double sided counters – how many are yellow?/red?)
- Problem-solving

Useful Materials and Manipulatives:

- Math chips, bears, counters
- Work mat
- Whiteboards
- Number bonds for decomposing/composing with cubes
- Decks of cards - Make a “10” Memory Card Game or “Go Fish”
- Double sided counter
- Dominoes
- Rekenreks
BUILDING A “TEN”

<table>
<thead>
<tr>
<th>K.OA.3</th>
<th>Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.OA.4</td>
<td>For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.</td>
</tr>
</tbody>
</table>

Possible Activities:

- Do as part of daily calendar routine
- Number talks
- Partner “make a ten” game
- Hand game
- “Counters in a Cup” Number bonds with manipulatives
- Pizza math

Useful Materials and Manipulatives:

- Ten frames
- Beads on pipe cleaners
- Teddy bear counters
- Red/yellow counters
- Illuminations (NCTM) Fill 5, Fill 10 game (website)
- iPad apps
- Rekenreks
- Dominoes
- Playing cards
POSITIONAL WORDS

K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to.

Possible Activities:

- Songs (youTube.com)
- Rosie’s Walk – do your own class walk and change to the positional words students need to know, take pictures of your walk, and make a class book
- Draw a picture using position words (draw a tree next to your house, etc.)
- Battleship type game (Where’s Abe? from Georgia)
- Integrate with literacy

Useful Materials and Manipulatives:

- Hula hoops
- Teddy bears and cups
- Rosie’s Walk (book)
- Engage New York
- E Binders (FWPS)
- Vocabulary cards with pictures
- 2D/3D shapes
- Create spinners with words and pictures for students to practice
- Puppets
| **K.G.2** | Correctly name shapes regardless of their orientations or overall size. |
| **K.G.3** | Identify shapes as two-dimensional (lying in a plane, “flat”) or three-dimensional (“solid”). |
| **K.G.4** | Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/“corners”) and other attributes (e.g., having sides of equal length). |
| **K.G.5** | Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. |
| **K.G.6** | Compose simple shapes to form larger shapes. For example, “Can you join these two triangles with full sides touching to make a rectangle?” |

Possible Activities:
- Making shapes
- Shape hunt
- Shape song (Have Fun teaching – YouTube)
- Sorting shapes
- Van De Walle Activities
- Class book – using shapes in a different way – this used to be a square now it is a…
- GLAD – sentence patterning
- Use realia – like cereal boxes to show shapes

Useful Materials and Manipulatives:
- Geoblocks
- Attribute blocks
- Marshmallows/play dough & toothpicks/straws
- Tangrams
- Geoboards
- Pattern blocks
- 2D/3D shapes
- Tana Hoben books on shapes
- CCD (Cognitive Content Dictionary) chart/chant GLAD
PLACE VALUE

K.NBT.1 | Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

Possible Activities:

- Build with pretzels (10’s) and marshmallows (ones) 19 is 1 pretzel and ten ones (use along with ABCYA.com base 10 game)
- Counting school days
- Game (ten/ones trade)
- Inventory bags – counting collections

Useful Materials:

- Base 10 blocks
- Linking cubes – use 2 different color towers for 10’s and ones (1 red(10) 2 blue=12)
- Match with number cards
- Ten frames
- Double 10 frames
- Straws and rubber bands
- Pennies and dimes
- Rekenreks
- Virtual manipulatives – web game
MEASUREMENT

<table>
<thead>
<tr>
<th>K.MD.1</th>
<th>Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.MD.2</td>
<td>Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.</td>
</tr>
</tbody>
</table>

Possible Activities:

- Whole group measure with scales, rulers – model vocabulary
- Small group practice using vocabulary and scales/cubes to measure
- Measuring their body
- Explore materials to use vocabulary

Useful Materials and Manipulatives:

- Scales
- Objects to weigh/objects to fill (beans, rice, Easter eggs, etc.)
- Non-standard measurement objects (cubes, clips, popsicle sticks)
- Rulers, tape measures
- Objects in the classroom
- Measurement books (Measuring Penny) – ribbons, bead strings, different cups, containers for capacity
Worksheet Options Journey to Literacy: No Worksheets Required

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Blank Piece of Paper or Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides a limited opportunity for diagnosis to guide further teaching.</td>
<td>Provides a broader opportunity for diagnosis to guide future teaching.</td>
</tr>
<tr>
<td>(For example: If the child is required only to circle all of the c’s,</td>
<td>(For example: If the child writes, “I LV CTS,” then the teacher</td>
</tr>
<tr>
<td>then the child’s knowledge of vowels cannot be diagnosed.)</td>
<td>knows that the next step in this child’s learning might include a vowel</td>
</tr>
<tr>
<td></td>
<td>mini-lesson.)</td>
</tr>
<tr>
<td>Generally, focused on only one skill (e.g., connecting pictures with</td>
<td>Focuses on a variety of skills and knowledge (e.g., practicing spacing,</td>
</tr>
<tr>
<td>letters or circling one word or filling in a blank).</td>
<td>making connections with all of the sound symbols, focusing on directionality</td>
</tr>
<tr>
<td></td>
<td>of print).</td>
</tr>
<tr>
<td>The teacher does the thinking, problem solving, and most of the work –</td>
<td>The student does all the thinking, problem solving, and work, and is</td>
</tr>
<tr>
<td>the learner is passive.</td>
<td>actively engaged in the learning process.</td>
</tr>
<tr>
<td>Narrow, since everyone does the same task and generally there is only</td>
<td>Differentiated, so everyone can work at their own level and, therefore,</td>
</tr>
<tr>
<td>one right answer and the rest of the responses are wrong. Too difficult</td>
<td>appropriate for all.</td>
</tr>
<tr>
<td>for some; too easy for others.</td>
<td></td>
</tr>
<tr>
<td>Boring for some and interesting for only a few.</td>
<td>Interesting, challenging, and relevant to all.</td>
</tr>
<tr>
<td>Addresses one developmental level.</td>
<td>Addresses many different levels as the task can be approached</td>
</tr>
<tr>
<td></td>
<td>by children of different abilities (e.g., a string of letters, captions, or</td>
</tr>
<tr>
<td></td>
<td>sentences)</td>
</tr>
<tr>
<td>Often requires only one response.</td>
<td>Invites multiple responses.</td>
</tr>
<tr>
<td>Demonstrates limited picture of child’s knowledge.</td>
<td>Demonstrates a broad picture of the child’s individual skills.</td>
</tr>
<tr>
<td>Provides limited opportunities for oral language.</td>
<td>Provides a myriad of opportunities for oral language.</td>
</tr>
<tr>
<td>Often involves copying teacher’s work (e.g., printing letter b over</td>
<td>Involves practicing many literacy skills (e.g., letter formation, sound-</td>
</tr>
<tr>
<td>and over again).</td>
<td>symbol relationship, purpose for writing).</td>
</tr>
<tr>
<td>Closed.</td>
<td>Open-ended.</td>
</tr>
<tr>
<td>Learner works alone.</td>
<td>Learner can work collaboratively.</td>
</tr>
<tr>
<td>Often requires the adult to read/reread the instructions. Directions</td>
<td>Requires less adult assistance and more self-directed/independent</td>
</tr>
<tr>
<td>are often unclear, requiring interpretation or further instruction.</td>
<td>behaviors.</td>
</tr>
<tr>
<td>Can’t be extended. When the child is finished, there is nothing left</td>
<td>Can be extended.</td>
</tr>
<tr>
<td>to do but perhaps color on the back of the sheet.</td>
<td></td>
</tr>
<tr>
<td>Takes a short time to complete.</td>
<td>Requires more focus and attention; therefore, the child can spend as long</td>
</tr>
<tr>
<td></td>
<td>as is necessary to complete the task appropriately.</td>
</tr>
<tr>
<td>Provides limited opportunities for creativity (e.g., pre-cut art</td>
<td>Provides many opportunities for creative expression (art, writing,</td>
</tr>
<tr>
<td>projects).</td>
<td>illustrating)</td>
</tr>
</tbody>
</table>

1. Journey to Literacy: No Worksheets Required Flemington, Hewins, Villiers 2011

http://www.naeyc.org/files/naeyc/file/positions/PSREAD98.PDF.

Common Core State Standards (CCSS Web Resources)

Revised Publishers’ Criteria for the Common Core State Standards in English Language Arts and Literacy, Grades 3 - 12 http://www.corestandards.org/assets/Publishers_Criteria_for_3-12.pdf

Common Core Video Resources for post-viewing.

Additional Video Resources

“From the Page to the Classroom: Implementing the Common Core State Standards - English Language Arts and Literacy” by the Council of Great City Schools (51:49) http://vimeo.com/44521437

“The English Language Arts Standards: Key Changes and Their Evidence” by the Hunt Institute (6:25) http://www.youtube.com/watch?v=JDzTOyxRGLI&list=UUF0pa3nE3aZAfBMT8pqM5PA&index=6&feature=plcp

Common Core Web Resources

www.achievethecore.org
This site is assembled by Student Achievement Partners to provide free, high-quality resources to educators now doing the hard work of implementing these higher standards.

www.illustrativemathematics.org
Illustrative Mathematics provides guidance to states, assessment consortia, testing companies, and curriculum developers by illustrating the range and types of mathematical work that students experience in a faithful implementation of the Common Core State Standards, and by publishing other tools that support implementation of the standards."

www.commoncoretools.me
News about tools that are being developed to support implementation of the Common Core State Standards for Mathematics.

http://www.pta.org/parents/content.cfm?ItemNumber=2583&navItemNumber=3363
The PTA’s Parents’ Guide to Student Success (in English and Spanish) was developed in response to the Common Core State Standards The Guide includes: key items that children should be learning and activities that parents can do at home to support their child’s learning.

http://www.smarterbalanced.org/
The website of the Smarter Balanced Assessment Consortium.

www.corestandards.org
The website that hosts the complete CCSS documents as well as a collection of resources.

Web Resources

2013 University of Washington Center for Educational Leadership. 5D, 5D+, “5 Dimensions of Teaching and Learning”. http://www.k-12leadership.org/

Center on Instruction. Information on Research-Based Instruction. www.centeroninstruction.org

What Works Clearinghouse – The Institute of Education Sciences site provides educators with the information they need to make evidence-based decisions
Child development:
WaKIDS Characteristics of an Entering Kindergarten
http://www.k12.wa.us/WaKIDS/pubdocs/CharacteristicsofEnteringKindergartnerFlyer.pdf
Washington State Early Learning and Development Guidelines
www.del.wa.gov/development/guidelines

Emergent and Early Literacy:
http://www.literacyrockets.org/article/400/
http://preschoollab.osu.edu/publications/
http://www.everychildreadytoread.org/

For Parents and Caregivers

Early Learning Guidelines www.del.wa.gov/development/guidelines
 A resource for understanding how young children grow and develop and what parents, early learning educators and caregivers can do to support that growth and learning

Love Talk Play www.lovetalkplay.org/
 Provides ideas for how love, talk, and play are a part of everyday activities

 Information on developmental milestones and ways to support children

Brain Research

UW Institute for Learning & Brain Sciences - ilabs.washington.edu
 Emphasis on enabling all children from 0 to 5 to achieve their full potential

Harvard University Center on the Developing Child - developingchild.harvard.edu
 Using science to enhance child well-being through innovations in policy and practice
System Resources

A roadmap for building an early learning system created with the input of hundreds of Washington residents to ensure all children can succeed in school and life

Washington State Birth to Three Comprehensive Plan - https://www.k12.wa.us/ELA/pubdocs/CLP.pdf

The purpose of the CLP is to provide guidance and support for literacy practitioners—from caregivers to teachers to administrators along the birth to grade 12 continuum—as they build and sustain comprehensive literacy systems for their communities.

ESSB 5946— Strengthening Student Educational Outcomes

Part 1: Learning to Read, Reading to Learn -Title1/Learning Assistance Program (LAP)

Updates:

OSPI will support early literacy in grades K through 4 by implementing the Washington State Comprehensive Literacy Plan and by providing research, professional development, models of identification and intervention strategies, and technical support.

Key components of ESSB 5946 Part 1:

- School districts will implement a comprehensive early literacy program that includes the use of screening assessments to identify at-risk readers.

- Students not reading at grade level must be supported by reading interventions based on a menu of best practices.

- Report cards in K-4 must show reading progress and achievement levels for all students.

- Third grade students not at standard in reading must meet with the school to discuss retention and/or intervention plans.
Kindergarten Framework
A Guide to Empower Our Young Learners

2014–2015 • Version 2

Federal Way Public Schools
33330 8th Avenue South
Federal Way, 98003-9325

For more information about the contents
of this document, please contact:
Luisa Sanchez-Nilsen, FWPS
Director of Early Learning
Teaching for Learning
E-mail: Lsanchez@fwps.org
Phone: (253) 945-2127

To order more copies of this document,
Please call 253-945-2000
or visit our Web site at http://www.fwps.org

This document is available online at:
http://www.fwps.org

This material is available in alternative format upon request.
Contact the Educational Service Center at 253-945-2000.